Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves

Caowen Sun , Xulan Shang , Haifen Ding , Yanni Cao , Shengzuo Fang

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 805 -814.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 805 -814. DOI: 10.1007/s11676-020-01139-1
Original Paper

Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves

Author information +
History +
PDF

Abstract

Cyclocarya paliurus is widely distributed in subtropical areas of China. Secondary metabolites in the leaves, including flavonoids and triterpenoids, provide protection against diseases such as hyperlipidemia, diabetes, hypertension, and hypoimmunity. In this study, 343 C. paliurus leaves were collected from 32 distinct populations covering most of the main distribution, to deduce the response of flavonoids and triterpenoids to seven environmental factors. Principal component analysis was performed using seven flavonoid and six triterpenoid compounds. The results show that altitude, latitude, and longitude significantly contributed to variations in total flavonoid and triterpenoid contents. In addition, the interaction of these metabolites was extensively correlated with environment changes, and therefore should be considered during selection and cultivation.

Keywords

Cyclocarya paliurus / Environmental factors / Flavonoids / Secondary metabolite variation / Triterpenoids

Cite this article

Download citation ▾
Caowen Sun, Xulan Shang, Haifen Ding, Yanni Cao, Shengzuo Fang. Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves. Journal of Forestry Research, 2020, 32(2): 805-814 DOI:10.1007/s11676-020-01139-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alqahtani A, Tongkao-on W, Li KM, Razmovski-Naumovski V, Chan K, Li GQ. Seasonal variation of triterpenes and phenolic compounds in Australian Centella asiatica (L.) Urb. Phytochem Anal, 2015, 26(6): 436-443.

[2]

Barnes PW, Flint SD, Ryel RJ, Tobler MA, Barkley AE, Wargent JJ. Rediscovering leaf optical properties: new insights into plant acclimation to solar UV radiation. Plant Physiol Biochem, 2015, 93: 94-90.

[3]

Cao YN, Fang SZ, Yin ZQ, Fu XX, Shang XL, Yang WX, Yang HM. Chemical fingerprint and multicomponent quantitative analysis for the quality evaluation of Cyclocarya paliurus leaves by HPLC-Q-TQF-MS. Molecules, 2017, 22(11): 1927-1942.

[4]

Cao YN, Deng B, Fang SZ, Shang XL, Fu XX, Yang WX. Genotypic variation in tree growth and selected flavonoids in leaves of Cyclocarya paliurus. South For, 2018, 80(1): 67-74.

[5]

Casati P, Walbot V. Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol, 2003, 132(4): 1739-1754.

[6]

Deepak M, Lihavainen J, Keski-Saari S, Kontunen-Soppela S, Salojarvi J, Tenkanen A, Heimonen K, Oksanen E, Keinanen M. Genotype- and provenance-related variation in the leaf surface secondary metabolites of silver birch. Can J For Res, 2018, 48(5): 494-505.

[7]

Deng B, Shang XL, Fang SZ, Li QQ, Fu XX, Su J. Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus. J Agric Food Chem, 2012, 60: 6286-6292.

[8]

Deng B, Fang SZ, Yang WX, Tian Y, Shang XL. Provenance variation in growth and wood properties of juvenile Cyclocarya paliurus. New For, 2014, 45: 625-639.

[9]

Deng B, Cao YN, Fang SZ, Shang XL, Yang WX, Qian CY. Variation and stability of growth and leaf flavonoid content in Cyclocarya paliurus across environments. Ind Crop Prod, 2015, 76: 386-393.

[10]

Deng B, Fang S, Shang X, Fu X, Li Y. Influence of provenance and shade on biomass production and triterpenoid accumulation in Cyclocarya paliurus. Agroforest Syst, 2017, 1: 1-10.

[11]

Deng B, Fang S, Shang X, Fu X, Yang W. Influence of genotypes and environmental factors on leaf triterpenoid content and growth of Cyclocarya paliurus. J For Res, 2018, 30: 789-798.

[12]

Deng B, Fang SZ, Shang XL, Fu XX, LiY Y. Influence of provenance and shade on biomass production and triterpenoid accumulation in Cyclocarya paliurus. Agroforest Syst, 2019, 93: 483-492.

[13]

Deng B, Fang SZ, Shang XL, Fu XX, Yang WX. Influence of genotypes and environmental factors on leaf triterpenoid content and growth of Cyclocarya paliurus. J For Res, 2019, 30(3): 789-798.

[14]

Fan HH, Yao XM, Zhang TY, Lin XQ, Tang XH, Ma L. The selection of high-saponin-yield plus tree of Sapindus mukorossi. J For Sci Technol, 2013, 40: 69-73.

[15]

Fang SZ, Fu XX. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources. J Nanjing For Univ, 2007, 31(1): 95-100.

[16]

Fang SZ, Wang JY, Wei ZY, Zhu ZX. Methods to break seed dormancy in Cyclocarya paliurus (Batal.) Iljinskaja. Sci Hortic-Amst, 2006, 110(3): 305-309.

[17]

Fang SZ, Yang WX, Chu XL, Shang XL, She CQ, Fu XX. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus. Food Chem, 2011, 124: 1382-1386.

[18]

Hamilton G, Zanger AR, DeLucia EH, Berenbaum MR. The carbon nutrient balance hypothesis: its rise and fall. Ecol Lett, 2001, 4: 86-95.

[19]

Jaakola L, Hohtola A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ, 2010, 33(8): 1239-1247.

[20]

Jiao XL, Gao WW. Advances in studies on influence of environmental factors on triterpenoid saponin synthesis in medicinal plants. Chin Tradit Herb Drugs, 2011, 42(2): 398-402.

[21]

Keinänen M, Julkunen-Tiitto R, Mutikainen P, Walls M, Ovaska J, Vapaavuori E. Trade-offs in phenolic metabolism of silver birch: effects of fertilization, defoliation, and genotype. Ecology, 1999, 80(6): 1970-1986.

[22]

Kootstra A. Protection from UV-B-induced DNA damage by flavonoids. Plant Mol Biol, 1994, 26(2): 771-774.

[23]

Kurihara H, Asami S, Shibata H, Fukami H, Tanaka T. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol Pharm Bull, 2003, 26: 383-385.

[24]

Laitinen ML, Julkunen-Tiitto R, Tahvanainen J, Heinonen J, Rousi M. Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment, and ontogeny. J Chem Ecol, 2005, 31(4): 697-717.

[25]

Li WP, Liang YL, Bao TL, Mu L, Gao DK. Responses of total flavonoids and total saponins contents in fruits and leaves of balsam pear to soil moisture and their correlations. Food Sci, 2015, 36(8): 134-138.

[26]

Li QQ, Hu JL, Xie JH, Nie SP, Xie MY. Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja. Ann NY Acad Sci, 2017, 1398(1): 20-29.

[27]

Li XC, Fu XX, Shang XL, Yang WX, Fang SZ. Natural population structure and genetic differentiation for heterodicogamous plant: Cyclocarya paliurus, (Batal.) Iljinskaja (Juglandaceae). Tree Genet Genom, 2017, 13(4): 80-89.

[28]

Liu Y, Qian CY, Ding SH, Shang XL, Yang WX, Fang SZ. Effect of light regime and provenance on leaf characteristics, growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices. Bot Stud, 2016 57 1 28

[29]

Liu Y, Cao YN, Fang SZ, Wang TL, Yin ZQ, Shang XL, Yang WX, Fu XX. Antidiabetic effect of Cyclocarya paliurus leaves depends on the contents of antihyperglycemic flavonoids and antihyperlipidemic triterpenoids. Molecules, 2018, 23(5): 1042-1058.

[30]

Massad TJ, Dyer LA, Vega CG. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE, 2012 7 10 e47554

[31]

Oksanen J, Kindt R, Legendre P, O’Hara B. Vegan: Community Ecology Package, 2007, Vienna, Austria: R Foundation for Statistical Computing.

[32]

Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng C. A Meyer Phytochem Rev, 2005, 4: 159-175.

[33]

R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

[34]

Schlag EM, McIntosh MS. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochem, 2006, 67: 1510-1519.

[35]

Shang XL, Wu ZF, Yin ZQ, Zhang J, Liu ZJ, Fang SZ. Simultaneous determination of flavonoids and triterpenoids in Cyclocarya paliurus leaves using high-performance liquid chromatography. Afr J Tradit Compl, 2015, 12(3): 125-134.

[36]

Shu RG, Xu CR, Li LN, Yu ZL. Cyclocariosides II and III: two secodammarane triterpenoid saponins from Cyclocarya paliurus. Planta Med, 1995, 61(5): 551-553.

[37]

Shu RG, Xu CR, Li LN. Studies on the sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinsk. Acta Pharmaceut, 1995, 30: 757-761.

[38]

Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ, 2010, 33(1): 88-103.

[39]

Sun CW, Wang LC, Liu JM, Zhao GC, Gao SL, Xi BY, Duan J, Weng XH, Jia LM. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind Crop Prod, 2018, 118: 1-10.

[40]

Szakiel A, Paczkowski C, Henry M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev, 2011, 10: 471-491.

[41]

Valkama E, Salminen JP, Koricheva J, Pihlaja K. Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Ann Bot, 2004, 94(2): 233-242.

[42]

Wang QQ, Jiang CH, Fang SZ, Wang JH, Ji Y, Shang XL, Ni YC, Yin ZQ, Zhang J. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats. J Ethnopharmacol, 2017, 150(3): 1119-1127.

[43]

Wang J, Li J, Wu XL, Liu SJ, Li HF, Gao WY. Assessment of genetic fidelity and composition: Mixed elicitors enhance triterpenoid and flavonoid biosynthesis of Glycyrrhiza uralensis Fisch tissue cultures. Biotechnol Appl Biochem, 2017, 64(2): 211-217.

[44]

Wright M, Byrd J, Gao Y, Stubblefield J, Park H, Dunlap N. Isolation and structural clarification of triterpenes from Cyclocarya paliurus: Cyclocaric acid A and B. Planta Med, 2014, 80: 139-143.

[45]

Xie MY, Li L, Nie SP, Wang XR, Lee FSC. Determination of speciation of elements related to blood sugar in bioative extracts from Cyclocarya paliurus leaves by FIA-ICP-MS. Eur Food Res Technol, 2006, 223(2): 202-209.

[46]

Xie JH, Dong CJ, Nie SP, Li F, Wang ZJ, Shen MY, Xie MY. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem, 2015, 186(4): 97-105.

[47]

Zeng Y, Guo L, Yang G, Chen B, Wang J, Huang L. Effect of environmental ecological factors on saponins of medicinal plant. Chin J Exp Tradit Med Formulae, 2012, 18(17): 313-318.

[48]

Zhou MM, Lin Y, Fang SZ, Liu Y, Shang XL. Phytochemical content and antioxidant activity in aqueous extracts of Cyclocarya paliurus leaves collected from different populations. Peer J, 2019, 7: e6492.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/