Somatic embryogenesis and plant regeneration in Betula platyphalla

Jingli Yang , Da Yang , Wanqiu Lü , Xin Zhang , Miaomiao Ma , Guifeng Liu , Jing Jiang , Chenghao Li

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 937 -944.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (3) : 937 -944. DOI: 10.1007/s11676-020-01131-9
Original Paper

Somatic embryogenesis and plant regeneration in Betula platyphalla

Author information +
History +
PDF

Abstract

Betula platyphylla is a native tree species in northern China that has high economic and medicinal value. We developed an efficient protocol for the induction of somatic embryogenesis in B. platyphalla from immature zygotic embryos and assessed the effects of explant type, genotype, and plant growth regulators (PGRs) on embryogenic callus induction. Among the various explants evaluated, embryogenic callus was only produced from mature and immature zygotic embryos on medium with added 2,4-dichlorophenoxyacetic acid (2,4-D). Supplementation of 2,4-D-containing medium with cytokinins increased the frequency of embryogenic callus induction. On the 20 days after pollination, immature zygotic embryos that had been collected in mid-May yielded embryogenic tissue at the highest frequency (16.8%) when cultured on half-strength MS medium supplemented with 2.0 mg L−1 2,4-D and 0.2 mg L−1 6-benzylaminopurine (6-BA). The process of proliferation of embryogenic callus, somatic embryo formation, and subsequent plantlet conversion occurred under optimal culture conditions. When regenerated plants were transplanted to soil, 95% of them developed normally and grew vigorously. This somatic embryogenesis system required 3–4 months for the regeneration of B. platyphalla plantlets from immature zygotic embryos.

Keywords

Betula platyphalla / Somatic embryo / Embryogenic callus / Immature embryo

Cite this article

Download citation ▾
Jingli Yang, Da Yang, Wanqiu Lü, Xin Zhang, Miaomiao Ma, Guifeng Liu, Jing Jiang, Chenghao Li. Somatic embryogenesis and plant regeneration in Betula platyphalla. Journal of Forestry Research, 2020, 32(3): 937-944 DOI:10.1007/s11676-020-01131-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anami SE, Mgutu AJ, Taracha C, Coussens G, Karimi M, Hilson P, Van Lijsebettens M, Machuda J. Somatic embryogenesis and plant regeneration of tropical maize genotypes. Plant Cell Tiss Org Cult, 2010, 102: 285-295.

[2]

Bonga JM. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers. Can J For Res, 1995, 45: 379-383.

[3]

Chen AH, Yang JL, Niu YD, Yang CP, Liu GF, Yu CY, Li CH. High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and 6-BA on somatic embryo development. Plant Cell Tiss Organ Cult, 2010, 102: 357-364.

[4]

Cho N, Lee HK, Jeon BJ, Kim HP, Lee JH, Kim YC, Sung SH. The effects of Betula platyphylla bark on amyloid beta-induced learning and memory impairment in mice. Food Chem Toxicol, 2014, 74: 156-163.

[5]

Corredoira E, San-José MC, Vieitez AM. Induction of somatic embryogenesis from different explants of shoot cultures derived from young Quercus alba trees. Trees, 2012, 26: 881-891.

[6]

Eom HJ, Kang HR, Choi SU, Kim KH. Cytotoxic triterpenoids from the barks of Betula platyphylla var. japonica. Chem Biodivers, 2017, 14: e1600400.

[7]

Eom HJ, Kang HR, Kim HK, Jung EB, Park HB, Kang KS, Kim KH. Bioactivity-guided isolation of antioxidant triterpenoids from Betula platyphylla var. japonica bark. Bioorg Chem, 2016, 66: 97-101.

[8]

Fiuk A, Rybczyński JJ. Genotype and plant growth regulator-dependent response of somatic embryogenesis from Gentiana spp. leaf explants. Vitro Cell Dev Biol-Plant, 2008, 44: 90-99.

[9]

Gaj MD. Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue Org Cult, 2001, 64: 39-46.

[10]

Halperin W, Wetherell DF. Adventive embryony in tissue cultures of the wild carrot. Daucus Carota Am J Bot, 1964, 51(3): 274-283.

[11]

Hu R, Sun Y, WuB Duan H, Zheng H, Hu D, Lin H, Tong Z, Xu J, Li Y. Somatic embryogenesis of immature cunninghamia lanceolata (Lamb) hook zygotic embryos. Sci Rep, 2017 7 1 56

[12]

Huh JY, Lee S, Ma EB, Eom HJ, Baek J, Ko YJ, Kim KH. The effects of phenolic glycosides from Betula platyphylla var japonica on adipocyte differentiation and mature adipocyte metabolism. J Enzyme Inhib Med Chem, 2018, 33(1): 1167-1173.

[13]

Khilwani B, Kaur A, Ranjan R, Kumar A. Direct somatic embryogenesis and encapsulation of somatic embryos for in vitro conservation of Bacopa monnieri (L.) Wettst. Plant Cell Tiss Organ Cult, 2016, 127: 433-442.

[14]

Kurtén U, Nuutila AM, Kauppinen V, Rousi M. Somatic embryogenesis in cell cultures of birth (Betula pendula Roth.). Plant Cell Tiss Organ Cult, 1990, 23: 101-105.

[15]

Lara-Chavez A, Flinn BS, Egertsdotter U. Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa pine (Pinus oocarpa Schiede ex Schlectendal). Tree Physiol, 2011 31 12 1422

[16]

Li M, Wang S, Feng D. The advance of plant somatic embryogenesis and development. Chin Agric Sci Bull, 2011, 27(03): 237-241.

[17]

Lu D, Wei W, Zhou W, McGuigan LD, Ji F, Li X, Xing Y, Zhang Q, Fang K, Cao Q, Qin L. Establishment of a somatic embryo regeneration system and expression analysis of somatic embryogenesis-related genes in Chinese chestnut (Castanea mollissima Blume). Plant Cell Tiss Organ Cult, 2017, 130: 601-616.

[18]

Manoharan R, Tripathi JN, Tripathi L. Plant regeneration from axillary bud derived callus in white yam (Dioscorea rotundata). Plant Cell Tiss Organ Cult, 2016, 126: 481-497.

[19]

Matsuda H, Ishikado A, Nishida N, Ninomiya K, Fujiwara H, Kobayashi Y, Yoshikawa M. Hepatoprotective, superoxide scavenging, and antioxidative activities of aromatic constituents from the bark of Betula platyphylla var. japonica. Bioorg Med Chem Lett, 1998, 8: 2939-2944.

[20]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.

[21]

Pais MS. Somatic embryogenesis induction in woody species: the future after OMICs data assessment. Front Plant Sci, 2019, 10: 240.

[22]

Phillips GC, Hubstenberger JF, Hansen EE. Gamborg OL, Phillips GC. Plant regeneration from callus and cell suspension cultures by somatic embryogenesis. Plant cell tiss organ cult: fundamental methods, 1995, Heidelberg: Springer 81 90

[23]

Prakash MG, Gurumurthi K. Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tiss Organ Cult, 2010, 100: 13-20.

[24]

Sezgin M, Dumanoģlu H. Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill). Vitro Cell Dev Biol-Plant, 2014, 50: 58-68.

[25]

Solórzano-Cascante P, Sánchez-Chiang N, Jiménez VM. Explant type, culture system, 6-benzyladenine, meta-topolin and encapsulation affect indirect somatic embryogenesis and regeneration in Carica papaya L. Front Plant Sci, 2018, 9: 1769.

[26]

Stasolla C, Yeung EC. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult, 2003, 74: 15-35.

[27]

Thawaro S, Te-Chato S. Effect of genotypes and auxins on callus formation from mature zygotic embryos of hybrid oil palms. J Agric Tech, 2009, 5: 167-177.

[28]

Yang JL, Niu YD, Yang CP, Liu GF, Li CH. Induction of somatic embryogenesis from female flower buds of elite Schisandra chinensis. Plant Cell Tiss Organ Cult, 2011, 106: 391-399.

[29]

Yang YG, Guo YM, Guo Y, Guo ZC, Lin JX. Regeneration and large-scale propagation of Phragmites communis through somatic embryogenesis. Plant Cell Tiss Organ Cult, 2003, 75: 287-290.

[30]

Zhao W, Zheng S, Ling HQ. An efficient regeneration system and Agrobacterium-mediated transformation of Chinese upland rice cultivar Handao297. Plant Cell Tiss Organ Cult, 2011, 106(3): 475-483.

[31]

Zhou HC, Li M, Zhao X, Fan XC, Guo AG. Plant regeneration from in vitro leaves of the peach rootstock ‘Nemaguard’ (Prunus persica×P. davidiana). Plant Cell Tiss Organ Cult, 2012, 101(1): 79-87.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/