Structure and genetic diversity of natural populations of Guadua weberbaueri in the southwestern Amazon, Brazil

Glória da Silva Almeida Leal , Fabrício Assis Leal , Hugo Teixeira Gomes , Anderson Marcos de Souza , Sabina Cerruto Ribeiro , Jonny Everson Scherwinski-Pereira

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 755 -763.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 755 -763. DOI: 10.1007/s11676-020-01128-4
Original Paper

Structure and genetic diversity of natural populations of Guadua weberbaueri in the southwestern Amazon, Brazil

Author information +
History +
PDF

Abstract

The Brazilian state of Acre has an extensive natural reserve of bamboo, making it one of the largest in loco gene banks. The aim of this study was to characterize the structure and genetic diversity of Guadua weberbaueri Pilg. in two populations, one native (FAPB) and the other anthropized (FAPBA), using ISSR markers. The results show that the FAPB population exhibited higher values for all estimates of population diversity. However, the FAPBA population also showed high heterozygosity, corroborated by estimated gene flow (Nm = 3.9) between the populations. The study of the association between Nei’s genetic distances and the geographic distances between the populations were significantly correlated (r = 0.45, p = 0.01), corroborated by the dendrogram revealing two distinct groups corresponding to the collection sites, without mixing classes between populations in the same group. As for the coancestry coefficient, pairs of individuals in the first distance class were positive and significant, indicating that plants that are geographically closer share common alleles with a frequency greater than by chance, which means that there is a tendency that geographically closer individuals are related. Individuals presented similar genetic structure when the geographical distance between them was up to 56 m for FAPB and up to 156 m for FAPBA. It was concluded that anthropized environments exhibit less genetic diversity than native environments, inferring risks for species conservation if appropriate and planned management techniques are not adopted.

Keywords

Guadua / Bamboo / Genetic diversity / Amazon rainforest / Anthropized and native populations / Underutilization plants

Cite this article

Download citation ▾
Glória da Silva Almeida Leal, Fabrício Assis Leal, Hugo Teixeira Gomes, Anderson Marcos de Souza, Sabina Cerruto Ribeiro, Jonny Everson Scherwinski-Pereira. Structure and genetic diversity of natural populations of Guadua weberbaueri in the southwestern Amazon, Brazil. Journal of Forestry Research, 2020, 32(2): 755-763 DOI:10.1007/s11676-020-01128-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abreu AG, Grombone-Guaratini MT, Monteiro M, Pinheiro JB, Tombolato AFC, Zucchi MI. Development of microsatellite markers for Aulonemia aristulata (Poaceae) and cross-amplification in other bamboo species. Am J Bot, 2011, 98: 90-92.

[2]

Acre (2006) Governo do Estado do Acre, Programa Estadual de Zoneamento Ecológico Econômico do Estado do Acre, Fase II. Escala 1:250.000. Rio Branco: SEMA.

[3]

Aguiar RV, Cansian RL, Kubiak G, Busnello SLB, Tomazoni TA, Budke JC, Mossi AJ. Genetic variability of Eugenia uniflora L. in forest remnants at different successional stages. Ceres, 2013, 60: 226-233.

[4]

APG III. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc, 2009, 161: 105-121.

[5]

Bem EAD, Bittencourt JVM, Moraes MLT, Sebben AM. Scenarios of selective logging on genetic diversity and basal area of Araucaria angustifolia populations, with base in Ecogene modeling. Scient Forest, 2015, 43: 453-466.

[6]

Bernarde OS, Machado RA, Turci LCB. Herpetofauna of Igarape Esperanca area in the Reserva Extrativista Riozinho da Liberdade, Acre-Brazil. Biota Neot, 2011, 11: 117-144.

[7]

Boza EJ, Irish BM, Meerow AW, Tondo CL, Rodríguez OA, Ventura-López M, Gómez JA, Moore JM, Zhang D, Motamayor JC, Schnell RJ. Genetic diversity, conservation, and utilization of Theobroma cacao L.: genetic resources in the Dominican Republic. Genet Resour Crop Evol, 2013, 60: 605-619.

[8]

Buzatti RSO, Ribeiro RA, Lemos Filho JP, Lovato MB. Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest. Gen Mol Biol, 2012, 35: 838-846.

[9]

Cruz CD. Programa Genes (Versão Windows): aplicativo computacional em genética e estatística, 2001, Viçosa: UFV.

[10]

Daly D Smith N, Mori SA, Henderson A Erythroxylaceae. Flowering plants of neotropics, 2004, The New York Botanical Garden: Princeton University Press 143 145

[11]

Dardengo JFE, Rossi AAB, Silva BM, Silva IV, Silva CJ, Sebbenn AM. Diversity and spatial genetic structure of a natural population of Theobroma speciosum (Malvaceae) in the Brazilian Amazon. Biol Trop, 2016, 64: 1-9.

[12]

Duarte JF, Carvalho D, Almeida VF. Genetic conservation of Ficus bonijesulapensis RM Castro in a dry forest on limestone outcrops. Biochem Syst Ecol, 2015, 59: 54-62.

[13]

Dyer RJ. Powers of discerning: challenges to understanding dispersal processes in natural populations. Mol Ecol, 2007, 16: 4881-4882.

[14]

EMBRAPA (2011) O novo mapa de solos do Brasil: Legenda atualizada escala 1:5.000.000. Rio de Janeiro: Embrapa Solos

[15]

Excoffier L, Laval G, Schneider S (2007) ARLEQUIN a software for population data analysis. Version 3.1. Geneva: University of Geneva. https://cmpg.unibe.ch/software/arlequin3

[16]

Forzza RC, Baumgratz JFA, Bicudo CEM, Canhos DAL, Carvalho Junior AA, Coelho MAN, Costa AF, Costa DP, Hopkins MG, Leitman PM, Lohmann LG, Lughadha EN, Maia LC, Martinelli G, Menezes M, Morim MP, Peixoto AL, Pirani JR, Prado J, Queiroz LP, Souza S, Souza VC, Stehmann JR, Sylvestre LS, Walter BMT, Zappi DC. New brazilian floristic list highlights conservation challenges. Bioscience, 2012, 62: 39-45.

[17]

Gonçalves AC, Vieira FA, Reis CAF, Carvalho D. Conservação de Dimorphandra mollis benth. (Fabaceae) baseada na estrutura genética de populações naturais. Árvore, 2010, 34: 95-101.

[18]

Gonçalves AO, Pinheiro JB, Zucchi MI, Silva-Mann R. Genetic characterization of the coral tree (Erythrina velutina Willd.) in areas of low occurrence. Ciênc Agron, 2014, 45: 290-298.

[19]

Hamrick JL. Correlations between species traits and allozyme diversity: implications for conservation biology. Gen Cons Rare Plants, 1991, 24: 75-86.

[20]

Hardy O, Vekemans X. SPAGeDi 1.2: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618-620.

[21]

Jeong JH, Kim EH, Guo W, Yoo KO, Jo DG, Kim ZS. Genetic diversity and structure of the endangered species Megaleranthis saniculifolia in Korea as revealed by allozyme and ISSR markers. Plant Syst Evol, 2010, 289: 67-76.

[22]

Kageyama PY, Sebbenn AM, Ribas LA, Gandara FB, Castellen M, Perecim MB, Vencovsky R. Diversidade genética em espécies arbóreas tropicais de diferentes estágios sucessionais por marcadores genéticos. Sci For, 2003, 64: 93-107.

[23]

Loveless MD, Hamrick JL. Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst, 1984, 15: 65-95.

[24]

Martins K, Ribas LA, Moreno MA, Wadt LHO. Genetic consequences of tree species natural regeneration in an anthropogenic area, Acre State, Brazil. Acta Bot Bras, 2008, 22: 897-904.

[25]

Miller MP (1997) Tools for population genetics analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data, p 157

[26]

Mogg RJ, Bond JM. A cheap, reliable and rapid method of extracting highquality DNA from plants. Mol Ecol Notes, 2003, 3: 666-668.

[27]

Moraes MT, Kageayama PY, Sebbenn AM. Diversity and spatial genetic structure in two populations of Myracrodruon urundeuva Fr. All under different antropic conditions. Árvore, 2005, 29: 281-289.

[28]

Mukherjee AK, Ratha S, Dhar S, Debata AK, Acharya PK, Mandal S, Panda PC, Mahapatra AK. Genetic relationships among 22 taxa of bamboo revealed by ISSR and EST-Based random primers. Biochem Genet, 2010, 48: 1015-1025.

[29]

Muñoz JE, Londoño X, Rugeles P, Posso AM, Vallejo FA. Diversidad y estructura genética de Guadua angustifolia en la Ecorregión Cafetera colombiana. Rec Nat y Amb, 2010, 61: 45-52.

[30]

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583-590.

[31]

Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol, 2004, 13: 1143-1155.

[32]

Peakall R, Smouse PE. Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes, 2006, 6: 288-295.

[33]

Pereira MAR, Beraldo AL (2007) Bambu de corpo e alma. Bauru, SP: Canal 6 Projetos Editoriais, p 240

[34]

Ramos SLF, Dequigiovanni G, Sebbenn AM, Lopes MTG, Kageyama PY, Macêdo JLV, Kirst M, Veasey EA. Spatial genetic structure, genetic diversity and pollen dispersal in a harvested population of Astrocaryum aculeatum in the Brazilian Amazon. BMC Genet, 2016, 17: 1-10.

[35]

Reis CAF, Souza AM, Mendonça EG, Gonçalvez FR, Melo RMG, Carvalho D. Diversidade e estrutura genética espacial de Calophyllum brasiliense camb. (Clusiaceae) em uma floresta paludosa. Árvore, 2009, 33: 265-275.

[36]

Rohlf FJ (2000) Numerical taxonomy and multivariate analysis system version 2.11. Applied Biostatistics, New York.

[37]

Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed, 2000, 6: 125-134.

[38]

Tian B, Yang HQ, Wong KM, Liu AZ, Ruan ZY. ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Gen Resour Crop Evol, 2012, 59: 901-908.

[39]

Toro MA, Caballero A. Characterization and conservation of genetic diversity in subdivided populations. Philos Trans R Soc B-Biol Sci, 2005, 360: 1367-1378.

[40]

Vieira FA, Carvalho D, Higuchi P, Machado EL, Santos RM. Spatial pattern and fine-scale genetic structure indicating recent colonization of the palm Euterpe edulis in a Brazilian Atlantic forest fragment. Bioch Gen, 2010, 48: 96-103.

[41]

Vieira FA, Santana JAS, Santos RM, Fajardo CG, Coelho GAO, Carvalho D. DNA extraction protocols and cpDNA primers to Ficus bonijesulapensis (MORACEAE). Rev Caatinga, 2010, 23: 69-74.

[42]

Wang JL. Application of the one-migrant-per-generation rule to conservation and management. Cons Biol, 2004, 18: 332-343.

[43]

Wang R, Compton SG, Shi YS, Chen XY. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed. Ecol Evol, 2012, 2: 2250-2261.

[44]

Wang EJ, Glor RR, Losos HB. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett, 2013, 16: 175-182.

[45]

Williams DA, Muchugu E, Overholt WA. Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity, 2007, 98: 284-293.

[46]

Yang HQ, An MY, Bu ZJ, Tian B. Genetic diversity and differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a declining bamboo species in Yunnan, China, as Based on inter-simple sequence repeat (ISSR) Analysis. Int J Mol Sci, 2012, 13: 4446-4457.

[47]

Yeeh Y, Kang SS, Chung MG. Evaluation of the natural monumento populations of Camellia jamponica (Thearaceae) in Korea based on allzyme studies. Bot Bull Acad Sin, 1996, 37: 141-146.

[48]

Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis molecular biology and biotechnology center. Edmonton, v.10.

[49]

Zhou HP, Chen J. Spatial genetic structure in an understorey dioecious fig species: the roles of seed rain, seed and pollen-mediated gene flow, and local selection. J Ecol, 2010, 98: 1168-1177.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/