At what carbon price forest cutting should stop

Timo Pukkala

Journal of Forestry Research ›› 2020, Vol. 31 ›› Issue (3) : 713 -727.

PDF
Journal of Forestry Research ›› 2020, Vol. 31 ›› Issue (3) : 713 -727. DOI: 10.1007/s11676-020-01101-1
Original Paper

At what carbon price forest cutting should stop

Author information +
History +
PDF

Abstract

The carbon sink of boreal forests can be increased by paying forest landowners for carbon sequestration and taxing carbon releases. The aim of the study was to analyze the effect of carbon pricing on optimal forest management when forests are managed for maximal discounted benefits from timber production and carbon payments. A 0.5% random sample of all private forest stands of Finland was used in the analyses (48,842 stands). Calculations were performed for a 100-year time horizon. It was assumed that the carbon balance (difference between sequestrated carbon and released carbon) in the forest (trees and soil) or the carbon balance of forestry (trees, soil and wood-based products) was subsidized (positive balance) or taxed (negative balance) by 0, 50, 100 or 150 € t−1, corresponding to CO2 prices of 0, 13.6, 27.3 or 40.9 € t−1, respectively. The results showed that paying forest landowners 150 € t−1 of carbon sequestrated in forests would lead to the cessation of all cuttings everywhere in Finland for at least 100 years. In the northern part of the country, a carbon price of 100 € t−1 would be enough to make the no-cutting management economically optimal. A low carbon price had the highest relative impact (value of increased sequestration divided by the cost of carbon payments). The benefit/cost ratio of carbon subsidies was higher in the northern part of boreal zone than in the southern parts. Subsidizing within-forest carbon sequestration by 50 € t−1 would increase the carbon sequestration of Finnish forestry by 50%, ranging from 36% (south Finland) to 116% (north Finland). A payment of 100 € t−1 or more would increase carbon sequestration by 70%, which is nearly the maximum possible increase that can be obtained by carbon subsidies.

Keywords

Boreal forest / Carbon balance / Carbon sequestration / Carbon subsidies / Optimal forest management

Cite this article

Download citation ▾
Timo Pukkala. At what carbon price forest cutting should stop. Journal of Forestry Research, 2020, 31(3): 713-727 DOI:10.1007/s11676-020-01101-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P. Hyvän Metsänhoidon Suositukset—Metsänhoito (Recommendations for good forest management—forest management), 2014, Helsinki: Forest Development Centtre Tapio.

[2]

Assmuth A, Tahvonen O. Optimal carbon storage in even- and uneven-aged forestry. For Policy Economics, 2018, 87: 93-100.

[3]

Assmuth A, Rämö J, Tahvonen O. Economics of size-structured forestry with carbon storage. Can J For Res, 2017, 48(1): 11-22.

[4]

Backéus S, Wikströn P, Lämås T. A model for regional analysis of carbon sequestration and timber production. For Ecol Manag, 2006, 216(1–3): 28-40.

[5]

Couture S, Reynaud A. Forest management under fire risk when forest carbon sequestration has value. Ecol Econ, 2011, 70(11): 2002-2011.

[6]

Daigneault AJ, Miranda MJ, Sohngen B. Optimal forest management with carbon sequestration credits and endogeneous risk. Land Econ, 2010, 86(1): 155-172.

[7]

Díaz-Yáñez O, Pukkala T, Packalen P, Peltola H. Multifunctional comparison of different management strategies in boreal forests. Forestry, 2019

[8]

Guthrie G, Kumareswaran D. Carbon subsidies, taxes and optimal forest management. Environ Res Econ, 2009, 43(2): 275-293.

[9]

Heinonen T, Pukkala T, Mehtätalo L, Asikainen A, Kangas J, Peltola H. Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry. For Policy Econ, 2017, 80: 80-98.

[10]

Helmisaari H-S, Derome J, Nöjd P, Kukkola M. Fine root biomass in relation to stand characteristics in Norway spruce and Scots pine stands. Tree Physiol, 2007, 27: 1493-1504.

[11]

Hurmekoski E, Myllyviita T, Seppälä J, Heinonen T, Kilpeläinen A, Pukkala T, Mattila T, Hetemäki L, Asikainen A, Peltola H. Impact of structural changes in wood-using industries on net carbon emissions in Finland. J Ind Ecol, 2020

[12]

Korhonen KT, Ihalainen A, Viiri H, Heikkinen J, Henttonen HM, Hotanen J-P, Mäkelä H, Nevalainen S, Pitkänen J. Suomen metsät 2004–2008 ja niiden kehitys 1921–2008 (Finnish forests 2004–2008 and their development in 1921–2008). Metsätieteen aikakauskirja, 2013, 3: 269-608.

[13]

Laasasenaho J (1982) Taper curve and volume equations for pine spruce and birch. Communicationes Instituti Forestalis Fenniae 108

[14]

Liski J, Lehtonen A, Palosuo T, Peltoniemi M, Eggers T, Muukkonen P, Mäkipää R. Carbon accumulation in Finland’s forests 1922–2004—an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci, 2006, 63: 687-697.

[15]

Liski J, Tuomi M, Rasinmäki J (2009) Yasso07 user-interface manual. Finnish Environment Institute ((www.environment.fi/syke/yasso). 12 pp. + Appendix)

[16]

Malinen J, Kilpeläinen H, Piira T, Redsven V, Wall T, Nuutinen T. Comparing model-based approaches with bucking simulation-based approach in the prediction of timber assortment recovery. Forestry, 2007, 80: 309-321.

[17]

Mehtätalo L. Valtakunnalliset puukohtaiset tukki-vähennysmallit männylle, kuuselle, koivuille ja haavalle [National tree-level log defect models for pine, spruce and birch]. Metsätieteen aikakauskirja, 2002, 4: 575-591.

[18]

Minkkinen K, Laine J. Effect of drainage on peat bulk density of pine mires in Finland. Can J For Res, 1997, 28(2): 178-186.

[19]

Ojanen P. Metsäojituksen vaikutuksesta ilmastoon (Climatic impacts of forestry on drained boreal peatlands). Suo, 2015, 66(2): 49-55.

[20]

Ojanen P, Minkkinen K, Alm J, Penttilä T. Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For Ecol Manag, 2010, 260: 411-421.

[21]

Palahí M, Pukkala T, Trasobares A. Calibrating predicted tree diameter distributions in Catalonia, Spain. Silva Fennica, 2006, 40(3): 487-500.

[22]

Pohjola J, Laturi J, Lintunen J, Uusivuori J. Immediate and long-run impacts of a forest carbon policy—a market level assessment with heterogeneous forest owners. J For Econ, 2018, 32: 94-105.

[23]

Price C, Willis R. The multiple effects of carbon values on optimal rotation. Journal of Forest Economics, 2011, 17(3): 298-306.

[24]

Pukkala T. Dealing with ecological objectives in the Monsu planning system. Silva Lusitana Species Issue, 2004, 2004: 1-15.

[25]

Pukkala T. Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoillle. Metsätieteen aikakauskirja, 2005, 3: 311-322.

[26]

Pukkala T. Optimizing forest management in Finland with carbon subsidies and taxes. For Policy Econ, 2011, 13: 425-434.

[27]

Pukkala T. Does biofuel harvesting and continuous cover management increase carbon sequestration?. For Policy Econ, 2014, 43: 41-50.

[28]

Pukkala T. Carbon forestry is surprising. For Ecosyst, 2018 5 1 11

[29]

Pukkala T, Miina J. Optimising the management of a heterogeneous stand. Silva Fennica, 2005, 39(4): 525-538.

[30]

Pukkala T, Lähde E, Laiho O, Salo K, Hotanen J-P. A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region. Can J For Res, 2011, 41: 851-862.

[31]

Pukkala T, Lähde E, Laiho O. Species interactions in the dynamics of even- and uneven-aged boreal forests. J Sustain For, 2013, 32: 1-33.

[32]

Raymer AK, Gobakken T, Solberg B. Optimal forest management with carbon benefits included. Silva Fennica, 2011, 45(3): 395-414.

[33]

Repola J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica, 2009, 43(4): 625-647.

[34]

Repola J, Ojansuu R, Kukkola M (2007) Biomass functions for Scots pine, Norway spruce and birch in Finland. Working papers of the Finnish Forest Research Institute 53

[35]

Rummukainen A, Alanne H, Mikkonen E (1995) Wood procurement in the pressure of change—resource evaluation model till year 2010. Acta Forestalia Fennica 248

[36]

Sarkkola S (ed) (2007) Greenhouse impacts of the use of peat and peatlands in Finland. Research Programme Final Report. Ministry of Agriculture and Forestry 11a/2007 ISBN 978-952-453-394-2

[37]

Sarkkola S, Hökkä H, Koivusalo H, Nieminen M, Ahti E, Päivänen J, Laine J. Role of tree stand evapotranspiration in maintaining satisfactory drainage conditions in drained peatlands. Can J For Res, 2010, 40: 1485-1496.

[38]

Seppälä J, Heinonen T, Pukkala T, Kilpeläinen A, Mattila T, Myllyviita T, Asikainen A, Peltola H. Effect of increased wood harvesting and utilization on required greenhouse gas displacement factors of wood-based products and fuels. J Environ Manag, 2019, 247: 580-587.

[39]

Siitonen M, Anola-Pukkila A, Haara A, Härkönen K, Redsven V, Salminen O, Suokas A (2001) MELA Handbook 2000 Edition. The Finnish Forest Research Institute. ISBN 951-40-1786-2

[40]

Sjølie HK, Latta G, Solberg B. Potentials and costs of climate change mitigation in the Norwegian forest sector—does choice of policy matter?. Can J For Res, 2013, 43(6): 589-598.

[41]

Tuomi M, Laiho R, Repo A, Liski J. Wood decomposition model for boreal forests. Ecol Model, 2011, 222(3): 709-718.

[42]

Ťupek B, Launiainen S, Peltoniemi M, Sievänen R, Perttunen J, Kulmala L, Penttilä T, Lindroos A-J, Hashimoto S, Lehtonen A. Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model inference. Eur J Soil Sci, 2019, 70(4): 847-858.

[43]

Turunen J, Tomppo E, Tolonen K, Reinikainen A. Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. Holocene, 2002, 121: 69-80.

[44]

van Kooten GC, Binkley CS, Delcourt G. Effect of carbon taxes and subsides on optimal forest rotation and supply of carbon services. Am J Agric Econ, 1995, 77(2): 365-374.

[45]

van Kooten GC, Johnston CMT, Mokhtarzadeh F. Carbon uptake and forest management under uncertainty: why natural disturbance mattes. J For Econ, 2019, 34(1–2): 159-185.

[46]

Zubizarreta-Gerendiain A, Pukkala T, Peltola H. Effects of wood harvesting and utilization policies on the carbon balance of forestry under changing climate: a Finnish case study. For Policy Econo, 2016, 62: 168-176.

[47]

Zubizarreta-Gerendiain A, Pukkala T, Peltola H. Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape. J For Res, 2019, 30(3): 879-889.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/