The effects of temperature and host size on the development of Brachymeria lasus parasitising Hyphantria cunea

Shuo Tian , Tianzi Gu , Cong Chen , Xudong Zhao , Pengcheng Liu , Dejun Hao

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 401 -407.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 401 -407. DOI: 10.1007/s11676-020-01099-6
Original Paper

The effects of temperature and host size on the development of Brachymeria lasus parasitising Hyphantria cunea

Author information +
History +
PDF

Abstract

Brachymeria lasus Walker is a solitary endoparasitoid that attacks the pupae of a wide range of lepidopteran hosts, including an important invasive species, the fall webworm (Hyphantria cunea Drury). We studied the relationship between temperature and development of B. lasus from egg to adult hatching. The results show a decrease in parasitoid development time from 34.4 days at 18 °C to 10.6 days at 32 °C. The minimum threshold temperature of B. lasus was 13.2 °C ± 1.7 °C, and the effective accumulated temperature was 210.3 ± 28.7 degree days. These results provide a basis for optimizing the production of this parasitoid. In addition, the effects of host size on offspring performance of B. lasus were investigated under laboratory conditions. Offspring longevity, size, and percentage of females were positively correlated with host size. Female offspring are larger and live longer than males. Furthermore, this research showed that parasitoid adults successfully emerged from approximately 27.9% of pupae. However, eclosion or hatching of H. cunea decreased dramatically, which may be due to damage caused by female B. lasus when testing hosts with their ovipositors or by feeding on them. The results suggest that B. lasus has the potential to become an efficient natural enemy for controlling H. cunea.

Keywords

Hyphantria cunea / Brachymeria lasus / Parasitoid / Temperature / Development / Fitness

Cite this article

Download citation ▾
Shuo Tian, Tianzi Gu, Cong Chen, Xudong Zhao, Pengcheng Liu, Dejun Hao. The effects of temperature and host size on the development of Brachymeria lasus parasitising Hyphantria cunea. Journal of Forestry Research, 2020, 32(1): 401-407 DOI:10.1007/s11676-020-01099-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atkinson D. Temperature and organism size: a biological law for ectotherms. Adv Ecol Res, 1994, 25(6): 1-58.

[2]

Cao LJ, Yang F, Tang SY, Chen M. Development of an artificial diet for three lepidopteran insects. Chin J Appl Entomol, 2014, 51(5): 1376-1386.

[3]

Charnov EL, Skinner SW. Evolution of host selection and clutch size in parasitoid wasps. Fla Entomol, 1984, 67(1): 5-21.

[4]

Deng Y, Li F, Rieske LK, Sun LL, Sun SH. Transcriptome sequencing for identification of diapause-associated genes in fall webworm, Hyphantria cunea Drury. Gene, 2018, 668: 229-236.

[5]

Ding YQ. Mathematical ecology of insects, 1994, Beijing: Beijing Science Press 319 331

[6]

Golizadeh A, Kamali K, Fathipour Y, Abbasipour H. Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. J Asia Pac Entomol, 2009, 12(4): 207-212.

[7]

Goubault M, Fourrier J, Krespi L, Poinsot D, Cortesero AM. Selection strategies of parasitized hosts in a generalist parasitoid depend on patch quality but also on host size. J Insect Behav, 2004, 17(1): 99-113.

[8]

Hagstrum DW, Milliken GA. Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Ann Entomol Soc Am, 1988, 81(4): 539-546.

[9]

Heimpel GE, Lundgren JG. Sex ratios of commercially reared biological control agents. Biol Control, 2000, 19(1): 77-93.

[10]

Henter HJ. Constrained sex allocation in a parasitoid due to variation in male quality. J Evol Biol, 2004, 17(4): 886-896.

[11]

Holdaway FG, Smith HF. A relation between size of host puparia and sex ratio of Alysia manducator Pantzer. Aust J Exp Biol Med Sci, 1935, 10(4): 247-257.

[12]

Itô Y, Miyashita K. Biology of Hyphantria cunea Drury (Lepidoptera: Arctiidae) in Japan. V. Preliminary life tables and mortality data in urban areas. Res Popul Ecol, 1968, 10(2): 177-209.

[13]

Ji R, Xie BY, Li XH, Gao ZX, Li DM. Research progress on the invasive species, Hyphantria cunea. Chin Bull Entomol, 2003, 1: 13-18.

[14]

Keena MA, Moore PM. Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae and pupae. Environ Entomol, 2010, 39(4): 1323-1335.

[15]

King BH, Hurlbutt B. Offspring sex ratios in parasitoid wasps. Q Rev Biol, 1987, 62(4): 367-396.

[16]

Li SJ, Wang X, Zhou ZS, Zhu J, Hu J, Zhao YP, Huang GH. A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3h (HvAV-3h). PLoS ONE, 2013 8 12 e85704

[17]

Liu YH, Li BP. Host stage selection for Spodoptera exigua larvae and the effect on developmental parameters of solitary endoparasitoid in Meteorus pulchricornis (Hymenoptera: Braconidae). J Nanjing Agric Univ, 2006, 29: 66-70.

[18]

Liu ZD, Xu BB, Li L, Sun JH. Host-size mediated trade-off in a parasitoid Scleroderma sharmandi. PLoS ONE, 2011 6 8 e23260

[19]

Liu PC, Men J, Zhao B, Wei JR. Fitness-related offspring sex allocation of Anastatus disparis, a gypsy moth egg parasitoid, on different-sized host species. Entomol Exp Appl, 2017, 163(3): 281-286.

[20]

Luo LP, Wang XY, Yang ZQ, Cao LM. Research progress in the management of fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). J Environ Entomol, 2018, 40(4): 721-735.

[21]

Mao HX, Kunimi Y. Pupal mortality of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae), caused by parasitoids and pathogens. Jpn J Appl Entomol Zool, 1991, 35(3): 241-245.

[22]

Mao HX, Kunimi Y. Effects of temperature on the development and parasitism of Brachymeria lasus, a pupal parasitoid of Homona magnanima. Entomol Exp Appl, 1994, 71(1): 87-90.

[23]

Napoleon ME, King BH. Offspring sex ratio response to host size in the parasitoid wasp Spalangia endius. Behav Ecol Sociobiol, 1999, 46(5): 325-332.

[24]

Pilkington LJ, Hoddle MS. Use of life table statistics and degree-day values to predict the invasion success of Gonatocerus ashmeadi (Hymenoptera: Mymaridae), an egg parasitoid of Homalodisca coagulata (Hemiptera: Cicadellidae), in California. Biol Control, 2006, 37(3): 276-283.

[25]

Pilkington LJ, Lewis M, Jeske D, Hoddle MS. Calculation and thematic mapping of demographic parameters for Homalodisca vitripennis (Hemiptera: Cicadellidae) in California. Ann Entomol Soc Am, 2014, 107(2): 424-434.

[26]

Qiu B, Zhou ZS, Luo SP, Xu ZF. Effect of temperature on development, survival, and fecundity of Microplitis manilae (Hymenoptera: Braconidae). Environ Entomol, 2012, 41(3): 657-664.

[27]

Quicke DLJ. Parasitic wasps, 1997, London: Chapman Hall 470

[28]

Simser DH, Coppel HC. Courtship and mating behavior of Brachymeria lasus (Hymenoptera: Chalcididae), an imported gypsy moth parasitoid. Entomophaga, 1980, 25(4): 349-355.

[29]

Torqueti RMA, Fagundes PF, Oliveira KS, Luiz PP, Fabiana GD, De OHN. Thermal requirements and generation estimates of Trichospilus diatraeae (Hymenoptera: Eulophidae) in sugarcane producing regions of Brazil. Fla Entomol, 2013, 96(1): 154-159.

[30]

Traynor RE, Mayhew PJ. A comparative study of body size and clutch size across the parasitoid Hymenoptera. Oikos, 2005, 109: 305-316.

[31]

Ueno T. Adaptiveness of sex ratio control by the pupal parasitoid Itoplectis naranyae (Hymenoptera: Ichneumonidae) in response to host size. Evol Ecol, 1998, 12(6): 643-654.

[32]

Ueno T. Host-size-dependent sex ratio in a parasitoid wasp. Res Popul Ecol, 1999, 41: 47-57.

[33]

Ueno T. Effects of host size and laboratory rearing on offspring development and sex ratio in the solitary parasitoid Agrothereutes lanceolatus (Hymenoptera: Ichneumonidae). Eur J Entomol, 2015, 112(2): 281-287.

[34]

Vinson SB. Kerkut FA. The behavior of parasitoids. Comprehensive insect physiology, biochemistry and pharmacology, 1985, New York: Pergamon Press 417 469

[35]

Wang XG, Messing RH. Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behav Ecol Sociobiol, 2004, 56(6): 513-522.

[36]

Wang XG, Liu SS, Guo SJ, Lin W. Effects of host stages and temperatures on population parameters of Oomyzus sokolowskii, a larval-pupal parasitoid of Plutella xylostyella. Biocontrol, 1999, 44: 391-403.

[37]

Weseloh RM, Anderson JF. Releases of Brachymeria lasus and Coccygomimus disparis, two exotic gypsy moth parasitoids, in Connecticut: habitat preference and overwintering potential. Ann Entomol Soc Am, 1982, 75(1): 46-50.

[38]

West SA, Sheldon BC. Constraints in the evolution of sex ratio adjustment. Science, 2002, 295(5560): 1685-1688.

[39]

Wu HW, Kang Z, Xin SL, Qin XB, Zhang QM, Liu HX. Effects of different food plants on the growth, development and reproduction of fall webworm, Hyphantria cunea, larvae. Chin J Appl Entomol, 2012, 49(4): 963-968.

[40]

Xu M, Xu FY, Wu XQ. Differentially expressed proteins from the peritrophic membrane related to the lethal, synergistic mechanisms observed in Hyphantria cunea larvae treated with a mixture of Bt and chlorbenzuron. J Insect Sci, 2017, 17(2): 1-8.

[41]

Yan JJ, Xu CH, Li GW, Zhang PY, Gao WC, Yao DF, Li YM. Natural enemy insect of forest insect, 1989, Beijing: Forestry Publishing Press 113 114

[42]

Yang XQ, Wei JR, Yang ZQ. A survey on insect natural enemies of Hyphantria cunea in Dalian district, Liaoning Province. Chin J Biol Control, 2001, 17(1): 40-42.

[43]

Yang ZQ, Wei J, Wang XY. Mass rearing and augmentative releases of the native parasitoid Chouioia cunea for biological control of the introduced fall webworm Hyphantria cunea in China. BioControl J Int Organ Biol Control, 2006, 51(4): 401-418.

[44]

Yu QQ, Liu ZK, Chen C, Wen J. Antennal sensilla of Eucryptorrhynchus chinensis (Olivier) and Eucryptorrhynchus brandti, (Harold) (Coleoptera: Curculionidae). Microsc Res Tech, 2013, 76(9): 968-978.

[45]

Zhao TZ, Gao L, Ke SF, Wen YL. Establishment on the loss evaluation index system of Hyphantria cunea Drury's invading China. J Beijing For Univ, 2007, 2: 156-160.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/