Pathogenicity of Serratia marcescens to hazelnut weevil (Curculio dieckmanni)

Ping Zhang , Qingquan Zhao , Xiaoqian Ma , Ling Ma

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 409 -417.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 409 -417. DOI: 10.1007/s11676-020-01096-9
Original Paper

Pathogenicity of Serratia marcescens to hazelnut weevil (Curculio dieckmanni)

Author information +
History +
PDF

Abstract

The hazelnut weevil (Curculio dieckmanni Faust.) is a major pest of Asian hazel (Corylus heterophylla Fisch.) in China. Dead hazelnut weevil larvae were examined and the associated pathogenic bacterium was identified as Serratia marcescens Bizio. This significantly shortened the lifespan of hazelnut weevil. Larval weight was reduced as a function of S. marcescens concentration and exposure time. The structure of infected midgut cells was altered, with necrosis of the wall tissues and many cells becoming dislodged, creating cavities. The S. marcencens strain inhibited digestive enzyme activity and protective enzymes in the midgut of adult hazelnut weevil. Inhibition on S. marcencens strain increased with treatment time. S. marcescens directly destroyed the midgut cells and interfered with digestive and protective enzymes. This decreased the food intake and increased mortality of hazelnut weevil. S. marcescens appears to be an effective bacterium for the control of hazelnut weevil but requires further study, including biological formulation development and field application.

Keywords

Biocontrol / Curculio dieckmanni / Corylus heterophylla / Pathogenic mechanism / Serratia marcescens

Cite this article

Download citation ▾
Ping Zhang, Qingquan Zhao, Xiaoqian Ma, Ling Ma. Pathogenicity of Serratia marcescens to hazelnut weevil (Curculio dieckmanni). Journal of Forestry Research, 2020, 32(1): 409-417 DOI:10.1007/s11676-020-01096-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aggarwal C, Paul S, Tripathi V, Paul B, Khan A. Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development. Biocontrol, 2015, 60(5): 1-10.

[2]

Akça I, Tuncer C. Biological control and morphological studies on nut weevil (Curculio nucum L. Col., Curculionidae). Acta Hortic, 2005, 686: 413-420.

[3]

Ali S, Zhang C, Wang Z, Wang XM, Wu JH, Cuthbertson AGS, Shao Z, Qiu BL. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci Rep, 2017, 7: 46558.

[4]

Aucken HM, Pitt TL. Antibiotic resistance and putative virulence factors of Serratia marcescens with respect to O and K serotypes. J Med Microbiol, 1998, 47(12): 1105-1113.

[5]

Batallacarrera L, Morton A, Garciadelpino F. Field efficacy against the hazelnut weevil, Curculio nucum and short-term persistence of entomopathogenic nematodes. Span J Agric Res, 2013, 11(4): 1112-1119.

[6]

Batallacarrera L, Morton A, Santamaria S, Garcíadelpino F. Isolation and virulence of entomopathogenic fungi against larvae of hazelnut weevil Curculio nucum (Coleoptera, Curculionidae) and the effects of combining Metarhizium anisopliae with entomopathogenic nematodes in the laboratory. Biocontrol Sci Technol, 2013, 23(1): 101-125.

[7]

Batallacarrera L, Morton A, Shapiro-Ilan D, Strand MR, Garcia-del-Pino F. Infectivity of Steinernema carpocapsae and S-feltiae to larvae and adults of the Hazelnut Weevil, Curculio nucum: differential virulence and entry routes. J Nematol, 2014, 46(3): 281-286.

[8]

Batallacarrera L, Morton A, Garciadelpino F. Virulence of entomopathogenic nematodes and their symbiotic bacteria against the hazelnut weevil Curculio nucum. J Appl Entomol, 2016, 140(1–2): 115-123.

[9]

Bosa OCF, Cotes PAM. Efecto de las condiciones de cultivo sobre la actividad enzimática de Serratia marcescens contra Tecia solanivora (Lepidoptera: Gelechiidae). Rev Colomb Entomol, 2004, 30(1): 79-85.

[10]

Burger J, Gochfeld M, Kosson DS, Brown KG, Bliss LS, Bunn A, Clarke JH, Mayer HJ, Salisbury JA. The costs of delaying remediation on human, ecological, and eco-cultural resources: considerations for the department of energy: a methodological framework. Sci Total Environ, 2019, 649: 1054-1064.

[11]

Cheng Y, Wang J, Liu J, Zhao Y, Geng W, Zhang H. Analysis of ovary DNA methylation during delayed fertilization in hazel using the methylation-sensitive amplification technique. Acta Physiol Plant, 2015 37 11 231

[12]

Cheng Y, Liu J, Zhang H, Wang J, Zhao Y, Geng W. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut. PLoS ONE, 2015 10 4 e122072

[13]

Cheng YQ, Liu T, Zhao YX, Geng WT, Chen LT, Liu JF. Evaluation of pathogenicity of the fungi Metarhizium anisopliae and Beauveria bassiana in Hazelnut Weevil (Curculio nucum L., Coleoptera, Curculionidae) Larvae. Indian J Microbiol, 2016, 56(4): 405-410.

[14]

Cheng Y, Mou Y, Zhang X, Liu C, Liu J. iTRAQ protein profiling reveals candidate proteins regulating ovary and ovule differentiation in pistillate inflorescences after pollination in hazel. Tree Genetics Genomes, 2019, 15: 21.

[15]

Christine TG. Campos-Herrera R. Behaviour and population dynamics of entomopathogenic nematodes following application. Nematode pathogenesis of insects and other pests, 2015, Berlin: Springer 57 95

[16]

Dillon RJ, Vennard CT, Buckling A, Charnley AK. Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett, 2005, 8(12): 1291-1298.

[17]

Hejazi A, Keane CT, Falkiner FR. The use of RAPD-PCR as a typing method for Serratia marcescens. J Med Microbiol, 1997, 46(11): 913-919.

[18]

Jia M, Cao G, Li Y, Tu X, Wang G, Nong X, Whitman DW, Zhang Z. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Sci Rep, 2016, 6: 28424.

[19]

Liu CL, Ren DY, Li JJ, Fang L, Wang J, Liu JS, Min WH. Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. J Funct Foods, 2018, 42: 203-215.

[20]

Lou Q, Lu M, Sun J. Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods. Microb Ecol, 2014, 68(2): 397-415.

[21]

Luntz AJM, Blackwell A. Azadirachtin: an update. J Insect Physiol, 1993, 39(11): 903-924.

[22]

Mohan M, Selvakumar G, Sushil SN, Bhatt JC, Gupta HS. Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World J Microb Biot, 2011, 27(11): 2545-2551.

[23]

Moskalyk LA, Oo MM, Jacobs-Lorena M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol Biol, 2010, 5(4): 261-268.

[24]

Nakamura A, Okazaki K, Furuta T, Sakurai M, Iino R. Processive chitinase is Brownian monorail operated by fast catalysis after peeling rail from crystalline chitin. Nat Commun, 2018, 9: 3814.

[25]

Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D. A model of bacterial intestinal infections in Drosophila melanogaster. Plos Pathog, 2007 3 11 e173

[26]

Patil CD, Patil SV, Salunke BK, Salunkhe RB. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res, 2011, 109(4): 1179-1187.

[27]

Rharrabe K, Amri H, Bouayad N, Sayah F, Amri H, Sayah F. Effects of azadirachtin on post-embryonic development, energy reserves and amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). J Stored Prod Res, 2008, 44(3): 290-294.

[28]

Singh AK, Singh A, Joshi P. Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. Int J Pest Manag, 2016, 62(3): 222-227.

[29]

Stuart RJ, Barbercheck ME, Grewal PS. Campos-Herrera R. Entomopathogenic nematodes in the soil environment: distributions, interactions and the influence of biotic and abiotic factors. Nematode Pathogenesis of Insects and Other Pests, 2015, Berlin: Springer 97 137

[30]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12): 2725-2729.

[31]

Tao K, Long ZF, Liu K, Tao Y, Liu SG. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr Microbiol, 2006, 52(1): 45-49.

[32]

Tuncer C, Saruhan I, Akça I. Comparative toxicity of neem and seven insecticides on hazelnut weevil (Curculio nucum Col.: Curculionidae) with laboratory bioassays. Asian J Chem, 2007, 19(3): 2285-2294.

[33]

Wang B, Lu M, Cheng C, Salcedo C, Sun J. Saccharide-mediated antagonistic effects of bark beetle fungal associates on larvae. Biol Lett, 2013, 9(1): 20120787-20120787.

[34]

Wigglesworth VB. The principles of insect physiology, 1972, London: Chapman and Hall 357 400

[35]

Xu LT, Deng JD, Zhou FY, Cheng CH, Zhang LW, Zhang J, Lu M. a) Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. J Pest Sci, 2019, 92: 343-351.

[36]

Xu LT, Liu YP, Xu SJ, Lu M. b) Gut commensal bacteria in biological invasions. Integr Zool, 2019, 14: 613-618.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/