Carbon sink potential and allocation in above- and below-ground biomass in willow coppice

Marcin Pietrzykowski , Bartłomiej Woś , Paweł Tylek , Dariusz Kwaśniewski , Tadeusz Juliszewski , Józef Walczyk , Justyna Likus-Cieślik , Wojciech Ochał , Sylwester Tabor

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 349 -354.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 349 -354. DOI: 10.1007/s11676-019-01089-3
Original Paper

Carbon sink potential and allocation in above- and below-ground biomass in willow coppice

Author information +
History +
PDF

Abstract

This research estimates carbon sink and allocation in above- and below-ground biomass of a 12-year-old willow coppice plantation on fluvisol soil near the Vistula River (southern Poland). The plantation showed high C sink potential and sequestration rates. C sequestration by above-ground biomass was estimated at 10.8 Mg C ha−1 a−1. Accumulation in coarse roots was estimated at 1.5 Mg C ha−1 a−1 and in fine roots at 1.2 Mg C ha−1 a−1. Total C sequestered (above-ground biomass, coarse roots and fine roots) was estimated at 13.5 Mg C ha−1 a−1. These results confirm the potential of fast-growing plantations of willow to mitigate, over a short time span, the effects of high CO2 concentrations.

Keywords

Willow coppice / Biomass / Roots / Carbon sequestration

Cite this article

Download citation ▾
Marcin Pietrzykowski, Bartłomiej Woś, Paweł Tylek, Dariusz Kwaśniewski, Tadeusz Juliszewski, Józef Walczyk, Justyna Likus-Cieślik, Wojciech Ochał, Sylwester Tabor. Carbon sink potential and allocation in above- and below-ground biomass in willow coppice. Journal of Forestry Research, 2020, 32(1): 349-354 DOI:10.1007/s11676-019-01089-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Böhm W. Methods of studying root systems, 1979, Berlin: Springer 189

[2]

Dewar RC, Cannel MGR. Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiol, 1992, 11(1): 49-71.

[3]

Ericsson K, Rosenqvist H, Ganko E, Pisarek M, Nilsson L. An agro-economic analysis of willow cultivation in Poland. Biomass Bioenergy, 2006, 30(1): 16-27.

[4]

Fischer G, Prieler S, Velthuizen H. Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass Bioenergy, 2005, 28(2): 119-132.

[5]

Ford-Robertson JB, Mitchell CP, Watters MP. Short rotation coppice energy plantation: technology and economics. J Sustain For, 1993, 1(3): 23-40.

[6]

Gajewski R. Bocian P, Golec T, Rakowski J. BIOB market potential for energy purpos-es. Modern technologies for production and energy generation use of biomass, 2010, Institute of Power Engineering: Warsaw 414 418 (in Polish)

[7]

Grelle A, Aronsson P, Weslien P, Klemedtsson L, Lindroth A. Large carbon-sink potential by Kyoto forests in Sweden—a case study on willow plantations. Tellus B, 2007, 59(5): 910-918.

[8]

Grogan P, Matthews R. A modelling analysis of the potential for soil carbon sequestration under short rotation coppice willow bioenergy plantations. Soil Use Manage, 2002, 18(3): 175-183.

[9]

Heinsoo K, Merilo E, Petrovits M, Koppel A. Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Eston J Ecol, 2009, 58(1): 27-37.

[10]

Heller MC, Keoleian GA, Volk TA. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy, 2003, 25(2): 147-165.

[11]

Igliński B, Iglińska A, Kujawski W, Buczkowski R, Cichosz M. Bioenergy in Poland. Renew Sustain Energy Rev, 2011, 15(6): 2999-3007.

[12]

IUSS Working Group WRB (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106, FAO, Rome. E-ISBN 978-92-5-108370-3. http://www.fao.org/3/i3794en/I3794en.pdf. Accessed 30 May 2017

[13]

Juliszewski T, Kwaśniewski D, Pietrzykowski M, Tylek P, Walczyk J, Woś B, Likus J. Root biomass distribution in an energy willow plantation. Agric Eng, 2015, 4(156): 43-49.

[14]

Kaul M, Mohren GMJ, Dadhwal VK. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India. Mitig Adapt Strateg Glob Change, 2010, 15: 395-409.

[15]

Kopp RF, Abrahamson LP, White EH, Burns KF, Nowak CA. Cutting cycle and spacing effects on biomass production by a willow clone in New York. Biomass Bioenergy, 1997, 12(5): 313-319.

[16]

Krasuska E, Rosenqvist H. Economics of energy crops in Poland today and in the future. Biomass Bioenergy, 2012, 38: 23-33.

[17]

Labrecque M, Teodorescu TI. High biomass field achieved by Salix clones in SRIC following 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy, 2003, 25: 135-146.

[18]

Mikó P, Kovács GP, Alexa L, Balla I, Póti P, Gyuricza CS. Biomass production of energy willow under unfavorable field conditions. Appl Ecol Environ Res, 2014, 12(1): 1-11.

[19]

Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol, 2006, 12(1): 84-96.

[20]

Mola-Yudego B. Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe. Silva Fenn, 2010, 44(1): 63-76.

[21]

Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA, 2004, 101(26): 9689-9693.

[22]

Ostrowska S, Gawliński Z, Szczubialka Z. Procedures for soil and plants analysis, 1991, Warsaw: Institute of Environmental Protection 333 (in Polish)

[23]

Pacaldo RS, Volk TA, Briggs RD. greenhouse gas potentials of shrub willow biomass crops based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenergy Res, 2012, 6: 252-262.

[24]

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci, 2007, 11: 1633-1644.

[25]

Richards BN. Introduction to the soil ecosystem, 1978, London: Longman Group Ltd 266

[26]

Rytter R-M. Fine-root production and turnover in a willow plantation estimated by different calculation methods. Scand J For Res, 1999, 14: 526-537.

[27]

Rytter R-M. The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass Bioenergy, 2012, 36: 86-95.

[28]

Schulz V, Gauder M, Seidl F, Nerlich K, Claupein W, Graeff-Hönninger S. Impact of different establishment methods in terms of tillage and weed management systems on biomass production of willow grown as short rotation coppice. Biomass Bioenergy, 2016, 85: 327-334.

[29]

Soil Survey Division Staff. Ditzler C, Scheffe K, Monger HC. Chapter 3. Examination and description of soil profiles. Soil survey manual, 2017, Washington, DC: Government Printing Office USDA Handbook 83 230

[30]

Stolarski M, Szczukowski S, Tworkowski J, Klasa A. Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy, 2008, 32(12): 1227-1234.

[31]

Szczukowski S, Tworkowski J, Stolarski M. Energy willow, 2004, Krakow: Plant Press 46 (in Polish)

[32]

Szczukowski S, Stolarski M, Tworkowski J, Przyborowski J, Klasa A. Productivity of willow coppice plants grown in short rotation. Plant Soil Environ, 2005, 51(9): 423-430.

[33]

Tylek P, Pietrzykowski M, Walczyk J, Juliszewski T, Kwaśniewski D. Root biomass and morphological characterization of energy willow stumps. Croat J For Eng, 2017, 38: 47-54.

[34]

Wang Z, MacFarlane DW. Evaluating the biomass production of coppiced willow and poplar clones in Michigan, USA, over multiple rotations and different growing conditions. Biomass Bioenergy, 2012, 46: 380-388.

[35]

Woś A. Climate of Poland, 1999, Warsaw: PWN Press 302 (in Polish)

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/