Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms

Xiaoming Yang , Tingting Zhou , Xiya Su , Guibin Wang , Xuhui Zhang , Qirong Guo , Fuliang Cao

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 765 -778.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 765 -778. DOI: 10.1007/s11676-019-01088-4
Original Paper

Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms

Author information +
History +
PDF

Abstract

Ginkgo biloba is a famous living “fossil” and has played an important role in the evolution of the Plant Kingdom. Here, the complete chloroplast genome of G. biloba was sequenced and analysed. The chloroplast genome was 156,990 bp long and predicted to encode 134 genes including 85 protein-coding genes, 41 tRNA genes and 8 rRNA genes. The chloroplast genome has a typical quadripartite structure with a pair of inverted repeat regions (IRa and IRb, 17,732 bp), a large (LSC, 99,259 bp) and small single (SSC, 22,267 bp) copy region. After an extensive comparison to previously published gymnosperm plastomes, the gene content and organisation of G. biloba showed high divergence, although part was relatively conserved. The two typical IR regions in the G. biloba chloroplast genome were relatively shorter because it the ycf2 gene. In addition, it was obvious that the IR regions and gene loss were responsible for changes in chloroplast genome size and structure stability, which influenced plastome evolution in different gymnosperms. Phylogenetic analysis revealed that G. biloba is sister to cycads rather than to gnetophytes, cupressophytes, and Pinaceae. Overall, the study showed that the genomic characteristics of G. biloba would be of great help in the further research on the taxonomy, species identification and evolutionary history of gymnosperms, especially for their position in plant systematics and evolution.

Keywords

Ginkgo biloba / Chloroplast genome / Comparative analysis / Phylogeny

Cite this article

Download citation ▾
Xiaoming Yang, Tingting Zhou, Xiya Su, Guibin Wang, Xuhui Zhang, Qirong Guo, Fuliang Cao. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. Journal of Forestry Research, 2020, 32(2): 765-778 DOI:10.1007/s11676-019-01088-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asaf S, Khan AL, Khan MA, Shahzad R, Lubna Kang SM, Al-Harrasi A, Al-Rawahi A, Lee IJ. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS ONE, 2018 13 3 e0192966

[2]

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 2011, 27(4): 578-579.

[3]

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.

[4]

Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J, 1997, 16(20): 6095-6104.

[5]

Chaw SM, Wu CS, Sudianto E. Evolution of gymnosperm plastid genomes. In: Advances in botanical research, 2018, New York: Elsevier 195 222

[6]

Chen JH, Hao ZD, Xu HB, Yang LM, Liu GX, Sheng Y, Zheng C, Zheng WW, Cheng TL, Shi JS. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci, 2015, 6: 447.

[7]

Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol, 2016 17 1 134

[8]

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models new heuristics and parallel computing. Nat Methods, 2012 9 8 772

[9]

Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152.

[10]

Gong W, Zeng Z, Chen YY, Chen C, Qiu YX, Fu CX. Glacial refugia of Ginkgo biloba and human impact on its genetic diversity: evidence from chloroplast DNA. J Integr Plant Biol, 2008, 50(3): 368-374.

[11]

Grant JR, Paul S. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res, 2008, 36: 181-184.

[12]

Gregory TR. Insertion-deletion biases and the evolution of genome size. Gene, 2004, 324: 15-34.

[13]

Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol, 2011, 28(1): 583-600.

[14]

Guo S, Guo L, Zhao W, Xu J, Li YY, Zhang XY, Shen XF, Wu ML, Hou XG. Complete chloroplast genome sequence and phylogenetic analysis of Paeonia ostii. Molecules, 2018, 23: 246.

[15]

Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol, 2008, 8: 70.

[16]

Hou Z, Wang ZS, Zhang JG. The complete chloroplast genomic landscape and phylogenetic analysis of Populus alba L. J For Res, 2019

[17]

Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF. Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci, 2003, 358(1429): 99-107.

[18]

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res, 2017, 27(5): 768-777.

[19]

Jansen RK, Ruhlman TA. Bock R, Knoop V. Plastid genomes of seed plants. Genomics of chloroplasts and mitochondria, 2012, Dordrecht: Springer 377

[20]

Jiang GF, Hinsinger DD, Strijk JS. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads. Sci Rep, 2016, 6: 31473.

[21]

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.

[22]

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res, 2001, 29(22): 4633-4642.

[23]

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome Biol, 2004 5 2 12

[24]

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

[25]

Li Z, De La Torre AR, Sterck L, Canovas FM, Avila C, Merino I, Cabezas J, Cervera M, Ingvarsson PK, Van de Peer Y. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol, 2017, 9(5): 1130-1147.

[26]

Li X, Li YF, Zang MY, Li MZ, Fang YM. Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. Int J Mol Sci, 2018, 19: 2443.

[27]

Lin CP, Wu CS, Huang YY, Chaw SM. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol, 2012, 4(3): 374-381.

[28]

Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, Tang JB, Wu GX, Zhang H, Shi YJ, Liu Y, Yu C, Wang B, Lu Y, Han CL, Cheung DW, Yiu SM, Peng SL, Zhu XQ, Liu GM, Liao XK, Li YR, Yang HM, Wang J, Lam TW, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012 1 1 18

[29]

Mao JP, Zhou F, Liu TY, Wu ZY, Zhong T, Liu CX, Wei Q, Chen JH, Huang SW. The complete chloroplast genome of Gnetum montanum and sequence analysis. Mitochondrial DNA A, 2017, 28(3): 409-410.

[30]

Marechal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. Int J Mol Sci, 2010, 186: 299-317.

[31]

Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics, 2000, 16(11): 1046-1047.

[32]

Moore MJ, Bell CD, Soltis PS, Soltis DE. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA, 2007, 104(49): 19363-19368.

[33]

Nie XJ, Lv SZ, Zhang YX, Du XH, Wang L, Biradar SS, Tan XF, Wan FH, Song WN. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE, 2012 7 5 e36869

[34]

Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 1986, 322: 572-574.

[35]

Ravi V, Khurana JP, Tyagi AK, Khurana P. An update on chloroplast genomes. Plant Syst Evol, 2008, 271(1–2): 101-122.

[36]

Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res, 2005, 33(2): 686-689.

[37]

Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol, 2017, 91: 145-155.

[38]

Shen L, Chen XY, Zhang X, Li YY, Fu CX, Qiu YX. Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. Heredity, 2005, 94: 396-401.

[39]

Shi LC, Chen HM, Jiang M, Wang LQ, Wu X, Huang LF, Liu C. CPGAVAS2 an integrated plastome sequence annotator and analyzer. Nucleic Acids Res, 2019, 47(1): 65-73.

[40]

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 2014, 30(9): 1312-1313.

[41]

Sun CR, Li J, Dai XG, Chen YN. Analysis and characterization of the Salix suchowensis chloroplast genome. J For Res, 2018, 29(4): 1003-1011.

[42]

Swofford DL. PAUP: phylogenetic analysis using parsimony version 40 b10, 2002, Sunderland: Sinauer Associates.

[43]

Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106(3): 411-422.

[44]

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22): 4673-4680.

[45]

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Bock R, Greiner S. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res, 2017, 45(1): 6-11.

[46]

Wang XL, Cheng F, Rohlsen D, Bi CW, Wang CY, Xu YQ, Wei SY, Ye QL, Yin TM, Ye N. Organellar genome assembly methods and comparative analysis of horticultural plants. Hortic Res, 2018 5 1 3

[47]

Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE. A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. Appl Plant Sci, 2014 2 12 1400059

[48]

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GK-S, Leebens-Mack J. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA, 2014, 111(45): 4859-4868.

[49]

Wu CS, Chaw SM. Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotechnol J, 2014, 12(3): 344-353.

[50]

Wu CS, Wang YN, Liu SM, Chaw SM. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol, 2007, 24(6): 1366-1379.

[51]

Wu CS, Lai YT, Lin CP, Wang YN, Chaw SM. Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol, 2009, 52(1): 115-124.

[52]

Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM. Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol, 2011, 3: 1284-1295.

[53]

Wu CS, Chaw SM, Huang YY. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads. Genome Biol Evol, 2013, 5(1): 243-254.

[54]

Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 2004, 20(17): 3252-3255.

[55]

Yagi Y, Shiina T. Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci, 2014, 5: 61.

[56]

Yang XM, Li H, Liang M, Xu Q, Chai LJ, Deng XX. Genetic diversity and phylogenetic relationships of citron (Citrus medica L) and its relatives in southwest China. Tree Genet Genomes, 2015 11 6 129

[57]

Zhang YZ, Ma J, Yang BX, Li RY, Wei Z, Sun LL, Tian JK, Zhang L. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species. Gene, 2014, 540(2): 201-209.

[58]

Zheng XM, Wang JR, Li F, Sha L, Pang HB, Lan Q, Jing L, Yan S, Qiao W, Zhang LJSR. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci Rep, 2017, 7: 1555.

[59]

Zhu AD, Guo WH, Gupta S, Fan WS, Mower JP. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol, 2016, 209: 1747-1756.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/