Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil

André Felipe Hess , Myrcia Minatti , Emanuel Arnoni Costa , Luis Paulo Baldissera Schorr , Gabriel Teixeira da Rosa , Isadora de Arruda Souza , Geedre Adriano Borsoi , Veraldo Liesenberg , Thiago Floriani Stepka , Roberta Abatti

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 191 -202.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 191 -202. DOI: 10.1007/s11676-019-01084-8
Original Paper

Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil

Author information +
History +
PDF

Abstract

Height-to-diameter ratios (HD) are an important measure of the stability, density and competition of forest stands. It reflects the vertical growth of the trees, the vulnerability of the forest canopy structure and influences volumetric production. HD ratios vary according to tree size, availability of resources for growth, stand density and species composition. Data were taken from 210 trees and a regression technique of generalized linear models for the HD ratio applicable for forest structure conservation was developed. The objective of this study was to model the HD ratios of dominant and co-dominant trees of Araucaria angustifolia according to morphometric, dendrometric, annual diameter increment, stand density, and age variables in three sites in southern Brazil. The results show that the HD ratio decreases with increasing age, crown area and basal area, and increases with stand density and annual diameter increment. Accuracy of the developed equations was demonstrated by the values of deviation, Bayesian and Akaike criteria. The results are of interest to forest managers since they make decisions about silvicultural operations. Growth continuity and forest production indicate that any intervention should be directed at younger trees of smaller sizes, and that one of the main management factors for stand stability and growth is the formation of the stand and its capture of light.

Keywords

Forest management / Mixed forests / Conservation / Araucaria angustifolia

Cite this article

Download citation ▾
André Felipe Hess, Myrcia Minatti, Emanuel Arnoni Costa, Luis Paulo Baldissera Schorr, Gabriel Teixeira da Rosa, Isadora de Arruda Souza, Geedre Adriano Borsoi, Veraldo Liesenberg, Thiago Floriani Stepka, Roberta Abatti. Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil. Journal of Forestry Research, 2020, 32(1): 191-202 DOI:10.1007/s11676-019-01084-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adame P, Hynynen J, Cañellas I, del Río M. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. For Ecol Manag, 2008, 255(3–4): 1011-1022.

[2]

Albert M, Schmidt M. Climate-sensitive modelling of site productivity relationship for Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.). For Ecol Manag, 2010, 259: 739-749.

[3]

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Parovek G. Köppen’s climate classification map for Brazil. Meteorol Z, 2013, 22(6): 711-728.

[4]

Alves LF, Santos FAM. Tree allometry and crown shape of four tree species in Atlantic rain forest, south-east Brazil. J Trop Ecol, 2002, 18: 245-260.

[5]

Assmann E. The principles of forest yield study, 1970, Oxford: Pergamon 506p

[6]

Barthélémy D, Caraglio Y. Plant architecture: a dynamic multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot, 2007, 99: 375-407.

[7]

Beckert SM, Rosot MAD, Rosot NC. Crescimento e dinâmica de Araucaria angustifolia (Bert.) O. Ktze. em fragmento de Floresta Ombrófila Mista. Sci For Piracicaba, 2014, 42(102): 209-218.

[8]

Bošela M, Konôpka B, Šebeň V, Vladovič J, Tobin B. Modelling height to diameter ratio—an opportunity to increase Norway spruce stand in the Western Carpathians. Lesn Cas For J, 2014, 60: 71-80.

[9]

Brasil (2006) Decreto nº 11428, 22 de dezembro de 2006. Dispõe sobre a utilização e proteção da vegetação nativa do Bioma Mata Atlântica, e dá outras providências. Diário Oficial [da República Federativa do Brasil], Brasília (1)

[10]

Brasil (2008) Decreto nº 6514, de 22 de junho de 2008. Dispõe sobre as infrações e sanções administrativas ao meio ambiente, estabelece o processo administrativo federal para apuração destas infrações, e dá outras providências. Diário Oficial [da República Federativa do Brasil], Brasília (1)

[11]

Costa EA, Finger CAG, Fleig FD. Influence of social position on the morphometrics relations in Araucaria angustifolia. Cienc Florest, 2016, 26(1): 225-234.

[12]

Costa EA, Finger CAG, Hess AF. Competition indices and their relationship with basal area increment of Araucaria. J Agric Sci, 2018, 10(5): 198-210.

[13]

Eguakun FS, Oyebade BA. Linear and nonlinear slenderness coefficient models for Pinus caribea (Morelet) stands in southwestern Nigeria. J Agric Vet Sci, 2015, 8(3): 26-30.

[14]

Forrester DI, Bauhus J. A review of processes behind diversity–productivity relationships in forests. Curr For Rep, 2016, 2: 45-61.

[15]

Forrester DI, Ammer C, Annighöfer PJ, Barbeito I, Bielak K, Oviedo AB, Coll L, del Río M, Drössler L, Heym M, Hurt V, Löf M, den Ouden J, Pach M, Pereira MG, Plaga BNE, Ponette Q, Skrzyszewski J, Sterba H, Svoboda M, Zlatanov TM, Pretzsch H. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J Ecol, 2018, 106: 746-760.

[16]

Hess AF, Loiola T, Souza IA, Nascimento B. Morphometry of the crown of Araucaria angustifolia in natural sites in southern Brazil. Bosque, 2016, 37(3): 603-611.

[17]

Hess AF, Silveira AC, Krefta SM, Santos DV, Filho MDHV, Atanazio KA, Schorr LPB, Souza IA, Borsoi GB, Stepka TF, Costa EA, Liesenberg V. Crown dynamics of Brazilian pine (Araucaria angustifolia) in Santa Catarina region of Brazil. Aust J Crop Sci, 2018, 12(3): 449-457.

[18]

Hess AF, Loiola T, Souza IA, Minatti M, Ricken P, Borsoi G. Forest management for the conservation of Araucaria angustifolia in southern Brazil. Floresta, 2018, 49(3): 373-382.

[19]

Hess AF, Loiola TM, Minatti M, Rosa GT, Souza IA, Costa EA, Schorr LPB, Borsoi GA, Stepka TF. Morphometric relationships as indicative of silvicultural interventions for Brazilian pine in southern Brazil. J Agric Sci, 2018, 10(7): 110-121.

[20]

Hess AF, Minatti M, Liesenberg V, Mattos PP, Braz EM, Costa EA. Brazilian pine diameter at breast height and growth in mixes Ombrophilous forest in Southern Brazil. Aust J Crop Sci, 2018, 12(05): 770-777.

[21]

Hess AF, Ricken P, Ciarnoschi LD. Dendrochronology, increment and forest management in araucaria forest, Santa Catarina state. Ciênc Florest, 2018, 28(4): 1568-1582.

[22]

Jucker T, Bouriand O, Coomes DA. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol, 2015, 29: 1078-1086.

[23]

Kaps M, Lamberson WR. Biostatistics for animal science, 2004, London: CABI Publishing 459p

[24]

King D, Davies S, Supardi MN, Tan S. Tree growth is related to light interception and wood density in two mixed dipterocarp forest of Malaysia. Funct Ecol, 2005, 19: 445-453.

[25]

Lines ER, Zavala MA, Purves DM, Coomes DA. Predictable changes in above ground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr, 2012, 21: 1017-1028.

[26]

MacFarlane DW, Kane B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct Ecol, 2017, 31: 1624-1636.

[27]

Minatti M, Hess AF, Ricken P, Loiola TM, Souza IA. Shape and size relationships of Araucaria angustifolia in South Brazil. Afr J Agric Res, 2016, 11(41): 4121-4127.

[28]

MMA (2008) Ministério do Meio Ambiente. Instrução Normativa nº 6, de 23 de setembro de 2008. Reconhece espécies da flora brasileira ameaçadas de extinção e revoga a Portaria Normativa Ibama no 37- N, de 3 de abril de 1992. Diário Oficial [da República Federativa do Brasil], Brasília, 185(1), p 75

[29]

Pavlis M, Kane B, Harris JR, Seiler JR. The effects of pruning on drag and bending moments of shade trees. Arboric Urban For, 2008, 34: 207-215.

[30]

Rinn Tech®. TSAP-WinTM: time series analysis and presentation for dendrochronology and related applications, 2010, Heidelberg: Rinntech.

[31]

SAS Institute. The SAS system for Windows (Release 9.2), 2011, Cary, NC: SAS Inst..

[32]

Schelhaas MJ. The wind stability of different silvicultural systems for Douglas-fir in the Netherlands: a model-based approach. Forestry, 2008, 81(3): 399-414.

[33]

Schelhaas MJ, Kramer K, Peltola H, van der Werf DC, Wijdeven SMJ. Introducing tree interactions in wind damage simulation. Ecol Model, 2007, 207: 197-209.

[34]

Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M. Wood growth patterns of Macrolobium acaciifolim (Benth.) Benth. (Fabaceae) in Amazonian black-water floodplain forest. Oecologia, 2005, 145: 654-661.

[35]

Silveira AC, Hess AF, Schorr LPB, Krefta SM, Santos DV, Filho MDHV, Atanazio KA, Costa EA, Stepka TF, Borsoi GA. Management of Brazilian pine (Araucaria angustifolia (Bertol.) Kuntze) based on the Liocourt model in a mixed Ombrophilous forest in Southern Brazil. Aust J Crop Sci, 2018, 12(02): 311-317.

[36]

Sonego RC, Backes A, Souza AF. Descrição da estrutura de uma Floresta Ombrófila Mista, RS, Brasil, utilizando estimadores não-paramétricos de riqueza e rarefação de amostras. Acta Bot Bras, 2007, 21(4): 943-955.

[37]

Tsega M, Guadie A, Teffera ZL, Belayneh Y, Niu D. Development and validation of height-diameter models for Cupressus lusitanica in Gergeda Forest, Ethiopia. For Sci Technol, 2018, 14(3): 138-144.

[38]

Vieilleddent G, Courbaud B, Kunstler G, Dhôte JF, Clark JS. Individual variability in tree Allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia, 2010, 163: 759-773.

[39]

Zhang X, Duan A, Zhang J, Xiang C. Estimating tree height-diameter models with the Bayesian method. Sci World J, 2014, 2014: 1-9.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/