Overexpression of CfPIP1-1, CfPIP1-2, and CfPIP1-4 genes of Catalpa fargesii in transgenic Arabidopsis thaliana under drought stress

Wenjun Ma , Yao Xiao , Yuan Li , Pan Hu , Zhi Wang , Guijuan Yang , Junhui Wang

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 285 -296.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (1) : 285 -296. DOI: 10.1007/s11676-019-01082-w
Original Paper

Overexpression of CfPIP1-1, CfPIP1-2, and CfPIP1-4 genes of Catalpa fargesii in transgenic Arabidopsis thaliana under drought stress

Author information +
History +
PDF

Abstract

Catalpa fargesii is an important economic tree species used for furniture and timber production because of its high density and hardness. Its survival and growth are severely affected and primarily limited by drought stress. Thus, to better understand the mechanism of drought resistance in C. fargesii, we used qRT-PCR to reveal significantly different expression of three plasma membrane intrinsic protein genes: CfPIP1-1, CfPIP1-2 and CfPIP1-4. We then cloned their full-length cDNA sequences and characterized the encoded proteins. We analyzed the genes phylogenetically and predicted conserved motifs, domains, and secondary and tertiary structures. To verify the function of the CfPIP1 genes further, we ectopically expressed CfPIP1 transgenes in Arabidopsis thaliana. The results showed that CfPIP1-1, CfPIP1-2 and CfPIP1-4 had several characteristics of aquaporins. The transgenic plants grew better than the WT plants did under drought stress, and overexpression of the CfPIP1 genes increased the plant water content and resistance to drought. Thus, CfPIP1-1, CfPIP1-2 and CfPIP1-4 of C. fargesii play key roles in regulating the intracellular and extracellular water balance and in mediating the plant response to drought.

Keywords

Catalpa fargesii / Drought tolerance / PIP1 / Aquaporin / Heterologous transformation

Cite this article

Download citation ▾
Wenjun Ma, Yao Xiao, Yuan Li, Pan Hu, Zhi Wang, Guijuan Yang, Junhui Wang. Overexpression of CfPIP1-1, CfPIP1-2, and CfPIP1-4 genes of Catalpa fargesii in transgenic Arabidopsis thaliana under drought stress. Journal of Forestry Research, 2020, 32(1): 285-296 DOI:10.1007/s11676-019-01082-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell, 2003, 15: 1-9.

[2]

Aroca R, Ferrante A, Vernieri P, Chrispeels MJ. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in phaseolus vulgaris plants. Ann Bot, 2006, 98(6): 1301-1310.

[3]

Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Meisel B, Sehabiague P, Vivek BS, Oikeh S, Alvarado G, Machida L, Olsen M, Prasanna BM, Bänziger M. Improving maize grain yield under drought stress and non-stress environments in sub-saharan africa using marker-assisted recurrent selection. Crop Sci, 2016, 56(1): 1-10.

[4]

Blake TJ, Li J. Hydraulic adjustment in jack pine and black spruce seedlings under controlled cycles of dehydration and rehydration. Physiol Plant, 2003, 117: 532-539.

[5]

Bunker DE, Carson WP. Drought stress and tropical forest woody seedlings: effect on community structure and composition. J Ecol, 2005, 93(4): 794-806.

[6]

Chaumont F, Barrieu F, Jung R, Chrispeels MJ. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol, 2000, 122: 1025-1034.

[7]

Chen Q, Yang SH, Kong XX, Wang CT, Xiang N, Yang YQ, Yang YP. Molecular cloning of a plasma membrane aquaporin in Stipa purpurea, and exploration of its role in drought stress tolerance. Gene, 2018, 665: 41-48.

[8]

Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.

[9]

Dulamsuren C, Hauck M, Leuschner C. Recent drought stress leads to growth reductions in larix sibirica in the western khentey, mongolia. Glob Change Biol, 2010, 16: 3024-3035.

[10]

Frick A, Järvå M, Ekvall M, Uzdavinys P, Nyblom M, Törnroth-Horsefield S. Mercury increases water permeability of a plant aquaporin through a non-cysteine-related mechanism. Biochem J, 2013, 454(3): 491-499.

[11]

Gao ZX, He XL, Zhao BC, Zhou CJ, Liang YZ, Ge RC, Shen YZ, Huang ZJ. Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol, 2010, 51(5): 767-775.

[12]

Gaspar M, Bousser A, Sissoëff L, Roche O, Hoarau J, Mahé A. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci, 2003, 165(1): 21-31.

[13]

Gindaba J, Rozanov A, Negash L. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. For Ecol Manag, 2004, 201(1): 119-129.

[14]

Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta, 2009, 1788(6): 1213-1228.

[15]

Hakman I, Oliviusson P. High expression of putative aquaporin genes in cells with transporting and nutritive functions during seed development in Norway spruce (Picea abies). J Exp Bot, 2002, 53: 639-649.

[16]

Hub JS, de Groot BL. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA, 2008, 105: 1198-1203.

[17]

Jang JY, Rhee JY, Kim DG, Chung GC, Lee JH, Kang H. Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. Plant Cell Physiol, 2007, 48(9): 1331-1339.

[18]

Jia JW, Wang JH, Zhang JF, Zhang SG, Zhang JG, Zhao K. Interspecific hybridization of Catalpa bungei and Catalpa fargesii f. duclouxii. For Res, 2010, 23(3): 382-386. (in Chinese with English abstract)

[19]

Jiang MY, Zhang JH. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42(11): 1265-1273.

[20]

Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. Molecular structure of the water channel through aquaporin chip: the hourglass model. J Biol Chem, 1994, 269: 14648-14654.

[21]

Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants. Biochim Biophys Acta, 2006, 1758(8): 1134-1141.

[22]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6): 1547-1549.

[23]

Li J, Ban LP, Wen HY, Wang Z, Dzyubenko N, Chapurin V, Gao HW, Wang XM. An aquaporin protein is associated with drought stress tolerance. Biochem Biophys Res Commun, 2015, 459(2): 208-213.

[24]

Ma WJ, Zhang SG, Wang JH, Zhai WJ, Cui YZ, Wang QX. Timber physical and mechanical properties of new Catalpa bungei clones. Scientia Silvae Sinicae, 2013, 49(9): 126-134. (in Chinese with English abstract)

[25]

Mahdieh M, Mostajeran A, Horie T, Katsuhara M. Drought stress alters water relations and expression of PIP Type aquaporin genes in Nicotiana tabacum. Plant Cell Physiol, 2008, 49(5): 801-813.

[26]

Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Devi BS, Yang DC. Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng. Mol Biol Rep, 2012, 39(7): 7327-7338.

[27]

Payn T, Carnus JM, Freer-Smith P, Kimberley MO, Kollert W, Liu S, Orazio C, Rodriguez LCE, Silva NL, Wingfield MJ. Changes in planted forests and future global implications. For Ecol Manag, 2015, 352: 57-67.

[28]

Pereira JS, Chaves MM. Smith JAC, Griffiths H. Plant water deficit in Mediterranean ecosystems. Water deficits: plant response from cell to community, 1993, Oxford: Bios Scientific Publishers 237 251

[29]

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425.

[30]

Shi HL, Ma WJ, Song JY, Lu M, Rahman SU, Bui TTX, Vu DD, Zheng HF, Wang JH, Zhang Y. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol, 2017, 37: 1-12.

[31]

Sserumaga JP, Beyene Y, Pillay K, Kullaya A, Oikeh SO, Mugo S, Machida L, Ngolinda I, Asea G, Ringo J, Otim M, Abalo G, Kiula B. Grain-yield stability among tropical maize hybrids derived from doubled-haploid inbred lines under random drought stress and optimum moisture conditions. Crop Pasture Sci, 2018, 69(7): 691-702.

[32]

Sui H, Han BG, Lee JK, Walian P, Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001, 414(6866): 872-878.

[33]

Sun HY, Li LC, Lou YF, Zhao HS, Yang YH, Wang SN, Gao ZM. The bamboo aquaporin gene PeTIP4;1-1confers drought and salinity tolerance in transgenic Arabidopsis. Plant Cell Rep, 2017, 36(4): 597-609.

[34]

Šurbanovski N, Sargent DJ, Else MA, Simpson DW, Zhang H, Grant OM. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content. PLoS ONE, 2013 8 9 e74945

[35]

Wang WC. Ma S, Liang S. Catalpa scop. Flora reipubicae popularis sinicae, 1990, Beijing: Science Press 13 18

[36]

Wang Y, Schulten K, Tajkhorshid E. What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Structure, 2005, 13(8): 1107-1118.

[37]

Wang X, Cai H, Li Y, Zhu YM, Ji W, Bai X, Zhu D, Sun XL. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants. J Plant Res, 2014, 128(1): 103-113.

[38]

Wang LQ, Wang C, Qin LP, Hu P, Wang YC. ThERF1 from Tamarix hispida confers decreased tolerance to oxidative and drought stresses and is regulated by a WRKY protein. J For Res, 2016, 27(4): 767-772.

[39]

Xiao Y, Ma WJ, Lu N, Wang Z, Wang N, Zhai WJ, Kong LS, Qu GZ, Wang QX, Wang JH. Genetic variation of growth traits and genotype-by-environment interactions in clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests., 2019, 10: 57.

[40]

Xu Y, Hu W, Liu JH, Zhang JB, Jia CH, Miao HX, Xu BY, Jin ZQ. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol, 2014, 14: 59.

[41]

Yaneff A, Vitali V, Amodeo G. PIP1 aquaporins: intrinsic water channels or PIP2 aquaporin modulators?. FEBS Lett, 2015, 589(23): 3508-3515.

[42]

Zhao B, Yang J, Yao WJ, Zhou BR, Zheng W, Jiang TB. Over expression of TaFer gene from Tamarix androssowii improves iron and drought tolerance in transgenic Populus tomentosa. J For Res, 2019, 30(1): 171-181.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/