Adaptability of Rhododendrons in high altitude habitats

Shruti Choudhary , Sapna Thakur , Aasim Majeed , Pankaj Bhardwaj

Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 449 -460.

PDF
Journal of Forestry Research ›› 2020, Vol. 32 ›› Issue (2) : 449 -460. DOI: 10.1007/s11676-019-01081-x
Review Article

Adaptability of Rhododendrons in high altitude habitats

Author information +
History +
PDF

Abstract

Tree species dominate many ecosystems throughout the world and their response to climate, in light of global warming, is a matter of primary concern. This review describes past and ongoing research in Rhododendron, an ecologically important and well-adapted genus of more than 1000 species, occupying diverse habitats. Research to date indicates survival ability and mechanisms, with an emphasis on cold tolerance. The capability of long-distance gene flow in these species increases their genetic variability which in turn enhances their adaptability to newer niches as well as to environmental gradients (mainly temperature). Attempts to explain the molecular basis of morphological and behavioural changes in Rhododendron against cold-induced damage has been made. Gradual advances in ‘omics’ have led to an enriched genomic resource dissecting the role and interaction of multiple molecular factors participating in cold adaptability. However, fewer genetic studies are available on species with an inherent or a default cold-tolerance ability. Considering this fact, understanding specific features of an adapted species can provide insights on overriding the effects of desiccation and determining phase transitions in other plants as well. We propose to integrate ecological and evolutionary studies with functional genomics to improve predictions of tree responses to their environment.

Keywords

Rhododendron / Adaptation / Frost / Growth / Geographical distribution

Cite this article

Download citation ▾
Shruti Choudhary, Sapna Thakur, Aasim Majeed, Pankaj Bhardwaj. Adaptability of Rhododendrons in high altitude habitats. Journal of Forestry Research, 2020, 32(2): 449-460 DOI:10.1007/s11676-019-01081-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anisko T, Lindstrom OM. Cold hardiness and water relations parameters in Rhododendron cv. catawbiense Boursault. subjected to drought episodes. Physiol Plant, 1996, 98(1): 147-155.

[2]

Bhattarai KR, Vetaas OR. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecol Biogeogr, 2003, 12(4): 327-340.

[3]

Brown GK, Nelson G, Ladiges PY. Historical biogeography of Rhododendron section Vireya and the Malesian Archipelago. J Biogeogr, 2006, 33(11): 1929-1944.

[4]

Chalker-Scott L, Scott JD. Elevated ultraviolet B radiation induces cross protection to cold in leaves of Rhododendron under field conditions. Photochem Photobiol, 2004, 79(2): 199-204.

[5]

Chen KT, Wang X, Fessehaie A, Yin YH, Wang XL, Arora R. Is expression of aquaporins (plasma membrane intrinsic protein 2s, PIP2s) associated with thermonasty (leaf-curling) in Rhododendron. J Plant Physiol, 2013, 170(16): 1447-1454.

[6]

Choudhary S, Thakur S, Saini RG, Bhardwaj P. Development and characterization of genomic microsatellite markers in Rhododendron arboreum. Conserv Genet Res, 2014, 6(4): 937-940.

[7]

Choudhary S, Thakur S, Najar RA, Majeed A, Singh A, Bhardwaj P. Transcriptome characterization and screening of molecular markers in ecologically important Himalayan species (Rhododendron arboreum). Genome, 2018, 61(6): 417-428.

[8]

Choudhary S, Thakur S, Majeed A, Bhardwaj P. Exploring microRNA profiles for circadian clock and flowering development regulation in Himalayan Rhododendron. Genomics, 2018

[9]

Choudhary S, Thakur S, Jaitak V, Bhardwaj P. Gene and metabolite profiling reveals flowering and survival strategies in Himalayan Rhododendron arboreum. Gene, 2019, 690: 1-10.

[10]

Chung JD, Lin TP, Chen YL, Cheng YP, Hwang SY. Phylogeographic study reveals the origin and evolutionary history of a Rhododendron species complex in Taiwan. Mol Phylogenet Evol, 2007, 42(1): 14-24.

[11]

Davidian HH. Rhododendron species-1. Lepidotes, 1982, Portland: Timber Press.

[12]

De Keyser E, Shu QY, van Bockstaele E, de Riek J. Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol Biol, 2010, 1: 11.

[13]

Dhyani PP, Purohit AN, Negi DCS. Variations in energy budget and water vapour transfer processes in some broadleaf timberline tree species at different altitudes. Plant Physiol Biochem, 1988, 15: 64-74.

[14]

Dunning CA, Chalker-Scott L, Scott JD. Exposure to ultraviolet-B radiation increases cold hardiness in Rhododendron. Physiol Plant, 1994, 92(3): 516-520.

[15]

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res, 2004, 32(5): 1792-1797.

[16]

Fang LC, Tong J, Dong YF, Xu DY, Mao J, Zhou Y. De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis. PLoS ONE, 2017 12 10 e0186376

[17]

Filella I, Peñuelas J. Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol, 1999, 145(1): 157-165.

[18]

Giriraj A, Irfan-Ullah M, Ramesh B, Karunakaran P, Jentsch A, Murthy M. Mapping the potential distribution of Rhododendron arboreum Sm. ssp. nilagiricum (Zenker) Tagg (Ericaceae), an endemic plant using ecological niche modelling. Curr Sci, 2008, 94(12): 1605-1612.

[19]

Goetsch L, Eckert AJ, Hall BD. Molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Syst Bot, 2005, 30(3): 616-626.

[20]

Hacker J, Neuner G. Ice propagation in dehardened alpine plant species studied by infrared differential thermal analysis (IDTA). Arct Antarct Alp Res, 2008, 40(4): 660-670.

[21]

Han MV, Zmasek CM. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinform, 2009, 10(1): 356-361.

[22]

Harris GC, Antoine V, Chan M, Nevidomskyte D, Königer M. Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Sci, 2006, 170(2): 314-325.

[23]

Hirao A, Kameyama Y, Ohara M, Isagi Y, Kudo G. Seasonal changes in pollinator activity influence pollen dispersal and seed production of the alpine shrub Rhododendron aureum (Ericaceae). Mol Ecol, 2006, 15(4): 1165-1173.

[24]

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol, 2018, 35(2): 518-522.

[25]

Ishikawa M, Sakai A. Freezing avoidance mechanisms by supercooling in some rhododendron flower buds with reference to water relations. Plant Cell Physiol, 1981, 22(6): 953-967.

[26]

Ishikawa M, Ishikawa M, Toyomasu T, Aoki T, Price WS. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing. Front Plant Sci, 2015, 6: 1-12.

[27]

Jin ZX, Ke SS. The diurnal variation of photosynthesis in leaves of Rhododendron fortunei. Bull Bot Res, 2004, 4: 20.

[28]

Johnson DM, Smith WK. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA. Tree Physiol, 2008, 28(3): 385-392.

[29]

Jonasson S. Resource allocation in relation to leaf retention time of the wintergreen Rhododendron lapponicum. Ecology, 1995, 76(2): 475-485.

[30]

Kaku S, Iwaya M, Kunishige M. Supercooling ability of Rhododendron flower buds in relation to cooling rate and cold hardiness. Plant Cell Physiol, 1980, 21(8): 1205-1216.

[31]

Kameyama Y, Isagi Y, Naito K, Nakagoshi N. Microsatellite analysis of pollen flow in Rhododendron metternichii var. hondoense. Ecol Res, 2000, 15(3): 263-269.

[32]

Karlsson P. Photosynthetic capacity and photosynthetic nutrient-use efficiency of Rhododendron lapponicum leaves as related to leaf nutrient status, leaf age and branch reproductive status. Funct Ecol, 1994, 8(6): 694-700.

[33]

Kondo T, Nakagoshi N, Isagi Y. Shaping of genetic structure along Pleistocene and modern river systems in the hydrochorous riparian azalea, Rhododendron ripense (Ericaceae). Am J Bot, 2009, 96(8): 1532-1543.

[34]

Kudo G. Relationships between flowering time and fruit set of the entomophilous alpine shrub, Rhododendron aureum (Ericaceae), inhabiting snow patches. Am J Bot, 2009, 80(11): 1300-1304.

[35]

Kudo G, Suzuki S. Flowering phenology of tropical-alpine dwarf trees on Mount Kinabalu, Borneo. J Trop Ecol, 2004, 20(5): 563-571.

[36]

Kurashige Y, Etoh JI, Handa T, Takayanagi K, Yukawa T. Sectional relationships in the genus Rhododendron (Ericaceae): evidence from mat K and trn K intron sequences. Plant Syst Evol, 2001, 228(1): 1-14.

[37]

Kuttapetty M, Pillai P, Varghese R, Seeni S. Genetic diversity analysis in disjunct populations of Rhododendron arboreum from the temperate and tropical forests of Indian subcontinent corroborate Satpura hypothesis of species migration. Biologia, 2014, 69(3): 311-322.

[38]

Larcher W, Siegwolf R. Development of acute frost drought in Rhododendron ferrugineum at the alpine timberline. Oecologia, 1985, 67(2): 298-300.

[39]

Li ZL, Cheng C, Zhang GW, Fang YP, Jin WB, Wang SZ. EST-SSR marker-based genetic diversity analysis of Rhododendron simsii germplasm in Guifeng mountain. J Agric Sci Technol, 2016, 17(5): 1073-1076.

[40]

Liao PC, Lin TP, Lan WC, Chung JD, Hwang SY. Duplication of the class I cytosolic small heat shock protein gene and potential functional divergence revealed by sequence variations flanking the α-crystallin domain in the genus Rhododendron (Ericaceae). Ann Bot, 2009, 105(1): 57-69.

[41]

Lim CC, Arora R, Krebs SL. Genetic study of freezing tolerance in Rhododendron populations: implications for cold hardiness breeding. J Am Rhod Soc, 1998, 52: 143-148.

[42]

Lim CC, Arora R, Townsend EC. Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. J Am Soc Hort Sci, 1998, 123(2): 246-252.

[43]

Lim CC, Krebs S, Arora R. 25-kDa dehydrin associated with genotype-and age-dependent leaf freezing-tolerance in Rhododendron: a genetic marker for cold hardiness?. Theor Appl Genet, 1999, 99(5): 912-920.

[44]

Lipp C, Nilsen E. Impact of subcanopy light environment on the hydraulic vulnerability of Rhododendron maximum to freeze-thaw cycles and drought. Plant Cell Environ, 1997, 20(10): 1264-1272.

[45]

Liu YM, Zhang LH, Liu Z, Luo K, Chen SL, Chen KL. Species identification of Rhododendron (Ericaceae) using the chloroplast deoxyribonucleic acid psbA-trnH genetic marker. Pharmacog Mag, 2012 8 29 29

[46]

Ma YP, Zhang CQ, Zhang JL, Yang JB. Natural hybridization between Rhododendron delavayi and R. cyanocarpum (Ericaceae), from morphological, molecular and reproductive evidence. J Integr Plant Biol, 2010, 52(9): 844-851.

[47]

Marian CO, Krebs SL, Arora R. Dehydrin variability among rhododendron species: a 25 kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol, 2004, 161(3): 773-780.

[48]

Marty C, Lamaze T, Pornon A. Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub. New Phytol, 2010, 187(2): 407-416.

[49]

McGraw JB. Effects of age and size on life histories and population growth of Rhododendron maximum shoots. Am J Bot, 1989, 76(1): 113-123.

[50]

Milne RI. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relict distribution. Mol Phylogenet Evol, 2004, 33(2): 389-401.

[51]

Milne RI, Terzioglu S, Abbott R. A hybrid zone dominated by fertile F1s: maintenance of species barriers in Rhododendron. Mol Ecol, 2003, 12(10): 2719-2729.

[52]

Nakano T, Ishida A. Diurnal variations of photosynthetic rates and xylem pressure potentials in four dwarf shrubs (Ericaceae) in an alpine zone. Proc NIPR Symp Polar Biol, 1994, 7: 243-255.

[53]

Negi G. Leaf and bud demography and shoot growth in evergreen and deciduous trees of central Himalaya, India. Trees, 2006, 20(4): 416-429.

[54]

Neuner G, Ambach D, Aichner K. Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiol, 1999, 19(11): 725-732.

[55]

Neuner G, Ambach D, Buchner O. Readiness to frost harden during the dehardening period measured in situ in leaves of Rhododendron ferrugineum L. at the alpine timberline. Flora, 1999, 194(3): 289-296.

[56]

Nilsen ET. Influence of water relations and temperature on leaf movements of Rhododendron species. Plant Physiol, 1987, 83: 607-612.

[57]

Nilsen ET. Relationship between freezing tolerance and thermotropic leaf movement in five Rhododendron species. Oecologia, 1991, 87(1): 63-71.

[58]

Osório ML, Osório J, Romano A. Chlorophyll fluorescence in micropropagated Rhododendron ponticum subsp. baeticum plants in response to different irradiances. Biol Plant, 2010, 54(3): 415-422.

[59]

Palacio S, Lenz A, Wipf S, Hoch G, Rixen C. Bud freezing resistance in alpine shrubs across snow depth gradients. Environ Exp Bot, 2015, 118: 95-101.

[60]

Peng YH, Arora R, Li GW, Wang X, Fessehaie A. Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Plant Cell Environ, 2008, 31(9): 1275-1289.

[61]

Peng YH, Lin WL, Wei H, Krebs SL, Arora R. Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Physiol Plant, 2008, 132(1): 44-52.

[62]

Peng YH, Reyes JL, Wei H, Yang YI, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5 overexpressing Arabidopsis plants. Physiol Plant, 2008, 134(4): 583-597.

[63]

Pornon A, Escaravage N, Till-Bottraud I, Doche B. Variation of reproductive traits in Rhododendron ferrugineum L. (Ericaceae) populations along a successional gradient. Plant Ecol, 1997, 130(1): 1-11.

[64]

Pornon A, Escaravage N, Thomas P, Taberlet P. Dynamics of genotypic structure in clonal Rhododendron ferrugineum (Ericaceae) populations. Mol Ecol, 2000, 9(8): 1099-1111.

[65]

Price WS, Ide H, Arata Y, Ishikawa M. Visualisation of freezing behaviours in flower bud tissues of cold-hardy Rhododendron japonicum by nuclear magnetic resonance micro-imaging. Funct Plant Biol, 1997, 24: 599-605.

[66]

Ranjitkar S, Luedeling E, Shrestha KK, Guan KY, Xu JC. Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int J Biometeorol, 2013, 57(2): 225-240.

[67]

Ruhland C, Day T. Changes in UV B radiation screening effectiveness with leaf age in Rhododendron maximum. Plant Cell Environ, 1996, 19(6): 740-746.

[68]

Sakai A, Larcher W (1987) Frost survival of plants-responses and adaptation to freezing stress. Springer, Berlin, p 62

[69]

Sakai A, Fuchigami L, Weiser CJ. Cold hardiness in the genus Rhododendron. J Am Soc Hort Sci, 1986, 111(2): 273-280.

[70]

Sharp R, Else M, Cameron R, Davies W. Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Sci Hort, 2009, 120(4): 511-517.

[71]

Stevens P. Altitudinal and geographical distributions of flower types in Rhododendron section Vireya, especially in the Papuasian species, and their significance. Bot J Linnean Soc, 1976, 72(1): 1-33.

[72]

Stout JC. Reproductive biology of the invasive exotic shrub, Rhododendron ponticum L. (Ericaceae). Bot J Linnean Soc, 2007, 155(3): 373-381.

[73]

Swiderski A, Muras P, Koloczek H. Flavonoid composition in frost-resistant Rhododendron cultivars grown in Poland. Sci Hort, 2004, 100(1): 139-151.

[74]

Thomson A, Radford G, Norris D, Good J. Factors affecting the distribution and spread of Rhododendron in North Wales. J Environ Manag, 1993, 39(3): 199-212.

[75]

Thornton JT. Breeding rhododendrons for the Gulf South. J Am Rhododendron Soc, 1990, 44: 91-93.

[76]

Väinölä A, Repo T. Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves. Ann Bot, 2000, 86(4): 799-805.

[77]

Vetaas OR. Realized and potential climate niches: a comparison of four Rhododendron tree species. J Biogeogr, 2002, 29(4): 545-554.

[78]

Wang X, Arora R, Horner HT, Krebs SL. Structural adaptations in overwintering leaves of thermonastic and nonthermonastic Rhododendron species. J Am Soc Hort Sci, 2008, 133(6): 768-776.

[79]

Wang X, Peng Y, Singer JW, Fessehaie A, Krebs SL, Arora R. Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: a comparison of photoprotective strategies in overwintering plants. Plant Sci, 2009, 177(6): 607-617.

[80]

Wang SZ, Li ZL, Jin WB, Xiang F, Xiang J, Fang YP. Development and characterization of polymorphic microsatellite markers in Rhododendron simsii (Ericaceae). Plant Sp Biol, 2017, 32(1): 100-103.

[81]

Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R. Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta, 2005, 221(3): 406-416.

[82]

Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L. Identification of cold acclimation-responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ, 2006, 29(4): 558-570.

[83]

Wolf PG, Doche B, Gielly L, Taberlet P. Genetic structure of Rhododendron ferrugineum at a wide range of spatial scales. J Hered, 2004, 95(4): 301-308.

[84]

Wu ML, Lin TP, Lin MY, Cheng YP, Hwang SY. Divergent evolution of the chloroplast small heat shock protein gene in the genera Rhododendron (Ericaceae) and Machilus (Lauraceae). Ann Bot, 2007, 99(3): 461-475.

[85]

Xiao Z, Su JL, Sun XB, Li C, He LS, Cheng SP, Liu XQ. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Genes Genomics, 2018, 46(6): 591-601.

[86]

Xing W, Liao JY, Cai MY, Xia QF, Liu Y, Zeng W, Jin XL. De novo assembly of transcriptome from Rhododendron latoucheae Franch. using Illumina sequencing and development of new EST-SSR markers for genetic diversity analysis in Rhododendron. Tree Genet Genomes, 2017 13 3 53

[87]

Zha HG, Milne RI, Sun H. Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1s in Yunnan, China. Ann Bot, 2009, 105(1): 89-100.

[88]

Zhang L, Xu PW, Cai YF, Ma LL, Li SF, Li SF, Xie WJ, Song J, Peng LC, Yan HJ, Zou L, Ma YP, Zhang CJ, Gao Q, Wang JH. Draft genome assembly of. Giga Rhododendron delavayi Franch. var. delavayi. Science, 2017, 6(10): 1-11.

[89]

Zhang Y, Zhang X, Wang YH, Shen SK. De novo assembly of transcriptome and development of novel EST-SSR markers in Rhododendron rex Lévl. through Illumina sequencing. Front Plant Sci, 2017, 8: 1664.

AI Summary AI Mindmap
PDF

349

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/