PDF
Abstract
The genus Hippophae includes deciduous shrubs or small trees, which provide many ecological, economic, and social benefits. We assembled and annotated the chloroplast genomes of sympatric Hippophae gyantsensis (Rousi) Lian and Hippophae rhamnoides Linn subsp. yunnanensis Rousi and comparatively analyzed their sequences. The full-length chloroplast genomes of H. gyantsensis and H. rhamnoides subsp. yunnanensis were 155,260 and 156,415 bp, respectively; both featured a quadripartite structure with two copies of a large inverted repeat (IR) separated by small (SSC) and large (LSC) single-copy regions. Each Hippophae chloroplast genome contained 131 genes, comprising 85 protein-coding, 8 ribosomal RNA, and 38 transfer RNA genes. Of 1302 nucleotide substitutions found between these two genomes, 824 (63.29%) occurred in the intergenic region or intron sequences, and 478 (36.71%) were located in the coding sequences. The SSC region had the highest mutation rate, followed by the LSC region and IR regions. Among the protein-coding genes, three had a ratio of nonsynonymous to synonymous substitutions (Ka/Ks) > 1 yet none were significant, and 66 had Ka/Ks < 1, of which 46 were significant. We found 20 and 16 optimal codons, most of which ended with A or U, for chloroplast protein-coding genes of H. gyantsensis and H. rhamnoides subsp. yunnanensis, respectively. Phylogenetic analysis of five available whole chloroplast genome sequences in the family Elaeagnaceae—using one Ziziphus jujube sequence as the outgroup—revealed that all five plant species formed a monophyletic clade with two subclades: one subclade consisted of three Hippophae species, while the other was formed by two Elaeagnus species, supported by 100% bootstrap values. Together, these results suggest the chloroplast genomes among Hippophae species are conserved, both in structure and gene composition, due to general purifying selection; like many other plants, a significant AT preference was discerned for most protein-coding genes in the Hippophae chloroplast genome. This study provides a valuable reference tool for future research on the general characteristics and evolution of chloroplast genomes in the genus Hippophae.
Keywords
Chloroplast genome
/
Hippophae gyantsensis (Rousi) Lian
/
Hippophae rhamnoides Linn subsp. yunnanensis
/
Ka/Ks
/
Optimal codon
Cite this article
Download citation ▾
Luoyun Wang, Jing Wang, Caiyun He, Jianguo Zhang, Yanfei Zeng.
Characterization and comparison of chloroplast genomes from two sympatric Hippophae species (Elaeagnaceae).
Journal of Forestry Research, 2020, 32(1): 307-318 DOI:10.1007/s11676-019-01079-5
| [1] |
Bal LM, Meda V, Naik SN, Satya S. Sea buckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res Int, 2011, 44(7): 1718-1727.
|
| [2] |
Bartish IV. Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot, 2002, 27(1): 47-54.
|
| [3] |
Chen SY, Zhang XZ. Characterization of the complete chloroplast genome of seabuckthorn (Hippophae rhamnoides L.). Conserv Genet Resour, 2017, 9(4): 623-626.
|
| [4] |
Cheng K (2008) Study on genetic diversity and protection of Hipppophae gyantsensis and Hippophae rhamnenoide subsp. yunnanensis. Master dissertation, Sichuan Agricultural University
|
| [5] |
Choi KS, Son O, Park S. The chloroplast genome of Elaeagnus macrophylla and trnH duplication event in Elaeagnaceae. PLoS ONE, 2015 10 9 e0138727
|
| [6] |
Datwyler SL, Weiblen GD. On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences. Am J Bot, 2004, 91(5): 767-777.
|
| [7] |
Dhyani D, Maikhuri RK, Dhyani S. Seabuckthorn: an underutilized resource for the nutritional security and livelihood improvement of rural communities in Uttarakhand Himalaya. Ecol Food Nutr, 2011, 50(2): 168-180.
|
| [8] |
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res, 2017 45 4 e18
|
| [9] |
Ding YQ, Yang F, Jin YL, Hai Z, He KZ. Systematic evolution of lemnoideae determined based on chloroplast genome analysis. Chin J Appl Environ Biol, 2017, 23(4): 622-627.
|
| [10] |
Dong WP, Xu C, Li CG, Sun JH, Zuo YJ, Shi S, Cheng T, Guo JJ, Zhou SL. Ycf1, the most promising plastid DNA barcode of land plants. Sci Rep, 2015, 5: 8348.
|
| [11] |
Dong WL, Wang RN, Zhang NY, Fan WB, Fang MF, Li ZH. Molecular evolution of chloroplast genomes of orchid species: insights into phylogenetic relationship and adaptive evolution. J Mol Sci, 2018, 19(3): 716-736.
|
| [12] |
Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15.
|
| [13] |
Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK. Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol, 2010, 70(2): 149-166.
|
| [14] |
He CY, Zhang GY, Zhang JG, Duan AG, Luo HM. Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides. Proteomics, 2016, 16(20): 2688-2697.
|
| [15] |
Hershberg R, Petrov DA. General rules for optimal codon choice. PLoS Genet, 2009 5 7 e1000556
|
| [16] |
Hu SS, Luo H, Wu Q, Yao HP. Analysis of codon bias of chloroplast genome of tartary buckwheat. Mol Plant Breed, 2016, 14(2): 309-317.
|
| [17] |
Huelsenbeck JP, Ronquist F. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8): 754-755.
|
| [18] |
Jadhav MS. Identification of gender specific DNA markers in sea buckthorn (Hippophae rhamnoides L.). Ind Res J Genet Biotech, 2014, 6(3): 464-469.
|
| [19] |
Jan DV, Sousa FL, Bettina BL, Jürgen S, Gould SB. YCF1: a green TIC?. Plant Cell, 2015, 27(7): 1827-1833.
|
| [20] |
Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ. Out of the Qinghai-Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides (Elaeagnaceae). New Phytol, 2012, 194(4): 1123-1133.
|
| [21] |
Kortesniemi M, Sinkkonen J, Yang BR, Kallio H. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophae rhamnoides) berries with respect to growth conditions in Finland and Canada. Food Chem, 2017, 219: 139-147.
|
| [22] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.
|
| [23] |
Li R, Yu YT. Application and prospect of DNA molecular markers in seabuckthorn heredity and breeding. Glob Seabuckthorn Res Dev, 2008, 6(2): 19-25.
|
| [24] |
Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content. Genome Biol Evol, 2016, 8(8): 2452-2458.
|
| [25] |
Li SS, Zeng YF, He CY, Zhang JG. Development of EST-SSR markers based on seabuckthorn transcriptomic sequences. For Res, 2017, 30(1): 69-74.
|
| [26] |
Li QL, Yan N, Song Q, Guo JZ. Complete chloroplast genome sequence and characteristics analysis of Morus multicaulis. Chin Bull Bot, 2018, 53(1): 94-103.
|
| [27] |
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451-1452.
|
| [28] |
Liu H, Wang MX, Yue WJ, Xing GW, Ge LQ, Nie XJ, Song WN. Analysis of codon usage in the chloroplast genome of broomcorn millet (Panicum miliaceum L.). Plant Sci J, 2017, 35(3): 362-371.
|
| [29] |
Liu YP, Su X, Lv T, Liu T. Characterization and phylogenetic analysis of the complete chloroplast genome of Orinus thoroldii (Poaceae). Conserv Genet Resour, 2018, 10(4): 761-764.
|
| [30] |
Lütz C, Engel L. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?. Protoplasma, 2007, 231(3–4): 183-192.
|
| [31] |
Ma YH, Ye GS, Xiang QS, Gao Y, Yang CJ, Wei GL, Song WX. Phylogenetic relationships of seabuckthorn based on ITS sequences. Chin J Appl Ecol, 2014, 25(10): 2985-2990.
|
| [32] |
Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. New Phytol, 2010, 186(2): 299-317.
|
| [33] |
Meng J, Li XP, Li HT, Yang JB, Wang H, He J. Comparative analysis of the complete chloroplast genomes of four aconitum medicinal species. Molecules, 2018, 23(5): 1015-1030.
|
| [34] |
Nazareno AG, Carlsen M, Lohmann LG. Complete chloroplast genome of Tanaecium tetragonolobum: the first bignoniaceae plastome. PLoS ONE, 2015 10 6 e0129930
|
| [35] |
Qian XS, Jin JH. Medical research and development of sea-buckthorn. Chin Wild Plant Res, 2015, 34(6): 68-72.
|
| [36] |
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh J. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol, 2014, 14(1): 23-50.
|
| [37] |
Ruhlman TA, Jansen RK. Maliga P. The plastid genomes of flowering plants. Chloroplast biotechnology, 2014, New York: Humana Press 3 38
|
| [38] |
Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res, 1999, 6(5): 283-290.
|
| [39] |
Stobdan T, Angchuk D, Singh SB. Seabuckthorn: an emerging storehouse for researchers in India. Curr Sci India, 2008, 94(94): 1236-1237.
|
| [40] |
Sugiura M. The chloroplast genome. Springer, 1992, 19(1): 149-168.
|
| [41] |
Suryakumar G, Gupta A. Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol, 2011, 138(2): 268-278.
|
| [42] |
Wang L, Dong WP, Zhou SL. Structural mutations and reorganizations in chloroplast genomes of flowering plants. Acta Bot Boreal Occident Sin, 2012, 32(6): 1282-1288.
|
| [43] |
Wang WC, Chen SY, Zhang XZ. Characterization of the complete chloroplast genome of Elaeagnus mollis, a rare and endangered oil plant. Conserv Genet Resour, 2017, 9: 439-442.
|
| [44] |
Wang LY, Xing HX, Yuan YC, Wang XL, Saeed M, Tao JC, Feng W, Zhang GH, Song XL, Sun XZ. Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS ONE, 2018 13 3 e0194372
|
| [45] |
Wang PL, Yang LP, Wu HY, Nong YL, Wu SC, Xiao YF, Qin ZH, Wang HY, Liu HL. Condon preference of chloroplast genome in Camellia oleifera. Guihaia, 2018, 38(2): 135-144.
|
| [46] |
Wicke S, Schneeweiss GM, Depamphilis CW, Muller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol, 2011, 76(3–5): 273-297.
|
| [47] |
Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 2004, 20(17): 3252-3255.
|
| [48] |
Xu C, Cai XN, Chen QZ, Zhou HX, Cai Y, Ben AL. Factors affecting synonymous codon usage bias in chloroplast genome of oncidium gower ramsey. Evol Bioinform, 2011, 7: 271-278.
|
| [49] |
Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinform, 2006, 4(4): 259-263.
|
| [50] |
Zhang HY, Li C, Miao HM, Xiong SJ. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS ONE, 2013 8 11 e80508
|
| [51] |
Zhang RT, Wang J, Han K, Ren T, Zeng SY, Biffin E, Liu ZL. Complete chloroplast genome sequence of Pedicularis cheilanthifolia, an alpine plant in China. Conserv Genet Resour, 2017, 9(W1): 1-3.
|
| [52] |
Zhao YC, Zheng H, Xu AY, Yan DH, Jiang ZJ, Qi Q, Sun JC. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution. BMC Genom, 2016, 17(1): 677-687.
|
| [53] |
Zhengqiu C, Penaflor C, Kuehl JV, Leebensmack J, Carlson J, Depamphilis CW, Boore JL, Jansen RK. Complete chloroplast genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogeny of magnoliids and the evolution of GC content. Off Sci Tech Inf Tech Rep, 2006, 6: 77.
|
| [54] |
Zhou X, Tian L, Zhang JF, Ma L, Li XJ. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L. J Basic Microbiol, 2017, 57(12): 1-10.
|