Spatial distribution and impacts of climate change on Milicia excelsa in Benin, West Africa
Sunday Berlioz Kakpo , Augustin Kossi Nounangnon Aoudji , Denis Gnanguènon-Guéssè , Alain Jaures Gbètoho , Kourouma Koura , Géoffroy Kévin Djotan , Jean Cossi Ganglo
Journal of Forestry Research ›› 2019, Vol. 32 ›› Issue (1) : 143 -150.
Spatial distribution and impacts of climate change on Milicia excelsa in Benin, West Africa
African teak (Milicia excelsa (Welw.) C.C. Berg) is an endangered multi-use species. Understanding the impact of climate change on the distribution of this species may improve the ability to anticipate or recognize its decline or expansion and to take appropriate conservation measures if necessary. Ecological niche modeling was projected in geographical space to study the current and future distribution of M. excelsa in Bénin. MaxEnt was used to estimate the potential geographic distribution of the species under two Representative Concentration Pathways (RCP). Miroc 5 summaries and two RCP 4.5 and RCP 8.5 scenarios were used as predictor variables for projections of the geographic potential of this species. The performance of the model was assessed by the area under the curve (AUC), true skill statistics (TSS) and partial receiver operating characteristics (Partial ROC). From the results, M. excelsa was more a secondary species in the Guinean climatic zone and part of the Sudanian-Guinean and Sudanian climatic zone. The projections show a significant decrease in suitable habitats for the species from the two RCP scenarios. Only a part of the Guinean climatic zone remained suitable and few protected areas will conserve in situ M. excelsa. For the sustainable conservation of M. excelsa, it is essential to strengthen the protection of sacred forests located in the Guinean climatic zone.
Ecological niche modeling / Climate change / Milicia excelsa / Benin / West Africa
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Ayihouenou EB, Fandohan AB, Sodé AI, Gouwakinnou NG et Djossa AB (2016) Biogéographie du néré (Parkia biglobosa (Jack.) R. Br. ex. Don.) sous les conditions environnementales actuelles et futures au Bénin. Bulletin de la Recherche Agronomique du Bénin (BRAB) (Agronomie, Société, Environnement & Sécurité Alimentaire), pp 1840−7099 |
| [7] |
|
| [8] |
|
| [9] |
Busby JW, Smith TG, White KL, Strange SM (2010) Locating climate insecurity: where are the most vulnerable places in Africa? Austin, TX, USA: University of Texas, The Robert Strauss Center for International Security and Law, Climate Change and African Political Stability (CCAPS) Programme |
| [10] |
|
| [11] |
Clarke LE, Edmonds JA, Jacoby HD, Pitcher H, Reilly JM, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1a of synthesis and assessment product 2.1. Climate change science program and the subcommittee on global change research, Washington DC |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Dotchamou FT, Atindogbe G, Sode AI, Fonton HN (2016) Density and spatial pattern of Parkia biglobosa under climate change: the case of Benin. J Agric Environ Int Dev 110(1): 173–194. 10.12895/jaeid.20161.447. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
GBIF (2016) Occurrence data download. Denmark: global biodiversity information facility. https://doi.org/10.15468/dl.ujt6rx |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
IPCC (2013) Climate change (2013) The physical science basis. IPCC working group I contribution to the IPCC fifth assessment report. Cambridge University Press, New York, New York, USA. |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
/
| 〈 |
|
〉 |