Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes

Marilene Olga dos Santos Silva , Marcela Gomes da Silva , Lina Bufalino , Maíra Reis de Assis , Delman de Almeida Gonçalves , Paulo Fernando Trugilho , Thiago de Paula Protásio

Journal of Forestry Research ›› 2019, Vol. 32 ›› Issue (1) : 211 -224.

PDF
Journal of Forestry Research ›› 2019, Vol. 32 ›› Issue (1) : 211 -224. DOI: 10.1007/s11676-019-01068-8
Original Paper

Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes

Author information +
History +
PDF

Abstract

Tachi-branco (Tachigali vulgaris, L.F.Gomes da Silva & H.C.Lima) is a leguminous tree species native to the Amazon rainforest that has drawn attention for its remarkably fast growth, a required trait for biomass/bioenergy plantations. In evaluations of biomass production and wood properties of T. vulgaris planted in homogeneous plantations at different spacings in the Amazonian state of Pará, Brazil, biomass of 7-year-old trees was quantified for individual trees and the entire population. Wood was also sampled to assess properties relevant to bioenergy applications. The choice for spacing dimension for planting nonclonal T. vulgaris should consider whether the priority is greater productivity per tree, achieved with greater spacings (9.0 m2 and 12.0 m2), or productivity per area, achieved with closer spacings (6.0 m2 and 7.5 m2). Genetic variability of the T. vulgaris seed stand and/or high heritability of wood traits overcame the effect of different spacing on all morphological, physical, chemical and energetic properties of T. vulgaris wood. This species has moderate basic density when cultivated at spacings larger than 6 m2 and net heating value above 7.95 MJ/kg, which is suitable for bioenergy purposes. The high variation in wood properties within tree spacing is strongly indicative of great potential for genetic breeding. The fast growth and the suitable moderate wood basic density confirm the outstanding potential of homogeneous plantations of T. vulgaris for providing wood for bioenergy.

Keywords

Basic density / Heating value / Planting density / Tachigali vulgaris

Cite this article

Download citation ▾
Marilene Olga dos Santos Silva, Marcela Gomes da Silva, Lina Bufalino, Maíra Reis de Assis, Delman de Almeida Gonçalves, Paulo Fernando Trugilho, Thiago de Paula Protásio. Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes. Journal of Forestry Research, 2019, 32(1): 211-224 DOI:10.1007/s11676-019-01068-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ABNT (The Brazilian Association of Technical Standards). NBR 11941–Wood: determination of basic density, 2003, Rio de Janeiro: ABNT.

[2]

Agbro EB, Ogie NA. A comprehensive review of biomass resources and biofuel production potential in Nigeria. Res J Eng Appl Sci, 2012, 1(3): 149-155.

[3]

ASTM (American Society for Testing Materials). D1762-84 - Standard test method for chemical analysis of wood charcoal, 2007, Philadelphia: ASTM.

[4]

Barros SVS, Nascimento CC, Azevedo CP. Energetic characterization of native and exotic forest species cultivated at Amazonas. Floresta, 2012, 42(4): 725-732.

[5]

Bentancor L, Hernández J, del Pino A, Califra A, Resquín F, González-Barrios P. Evaluation of the biomass production, energy yield and nutrient removal of Eucalyptus dunnii Maiden grown in short rotation coppice under two initial planting densities and harvest systems. Biomass Bioenergy, 2019, 122: 165-174.

[6]

Berger R, Schneider PR, Finger CAG, Haselein CR. Growth rate of Eucalyptus saligna Smith affected by spacing and fertilization. Ciênc Florest, 2002, 12(2): 75-87.

[7]

Bilgic E, Yaman S, Haykiri-Acma H, Kucukbayrak S. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?. Biores Technol, 2016, 200: 201-207.

[8]

Binkley D, Campoe OC, Alvares C, Carneiro RL, Cegatta I, Stape JL. The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. For Ecol Manag, 2017, 405(1): 271-283.

[9]

Brand MA. Energia de biomassa florestal, 2010, Rio de Janeiro: Interciência 131

[10]

Brand MA, Muñiz GIB, Quirino WF, Brito JO. Storage as a tool to improve wood fuel quality. Biomass Bioenergy, 2011, 35(7): 2581-2588.

[11]

Bustamante-García V, Carrillo-Parra A, González-Rodríguez H, Ramírez-Lozano RG, Corral-Rivas JJ, Garza-Ocañas F. Evaluation of a charcoal production process from forest residues of Quercus sideroxyla Humb., & Bonpl. in a Brazilian beehive kiln. Ind Crops Prod, 2013, 42: 169-174.

[12]

Carpanezzi AA, Marques LCT, Kanashiro M (1983) Aspectos ecológicos e silviculturais de taxi-branco-da-terra-firme (Sclerolobium paniculatum Vogel). https://www.researchgate.net/publication/242204833. Accessed 31 Oct 2018

[13]

Carrillo I, Aguayo MG, Valenzuela S, Mendonça RT, Elissetche JP. Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Res, 2015, 60: 1-10.

[14]

Choi HL, Sudiarto SIA, Renggaman A. Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel, 2014, 116(15): 772-780.

[15]

Committee IAWA. Wheeler EA, Baas P, Gasson P. IAWA list of microscopic features for hardwood identification. IAWA Bulletin, 1989, New York: State University of New York 219 332

[16]

Costa KCP, Lima RMB, Ferreira MJ. Biomass and energy yield of leguminous trees cultivated in Amazonas. Floresta, 2015, 4(45): 705-712.

[17]

Csanády E, Magoss E, Tolvaj L. Quality of machined wood surfaces, 2015, New York: Springer 257

[18]

Dacres OD, Tong S, Li X, Zhu X, Edreis EMA, Liu H, Luo G, Worasuwannarak N, Kerdsuwan S, Fungtammasan B, Yao H. Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction. Energy Convers Manag, 2019, 182(15): 117-125.

[19]

de Paula YL, Melo R da S, da Silva EDG, Alves AR, Boschetti WTN, de Holanda AC, Alves RC (2018) Wood characterization of Poincianella pyramidalis (TUL.) L.P. Queiroz. Cad Ciênc Tecnol 35(2):193–206

[20]

de Souza JC, Pedrozo CA, da Silva K, Oliveira A, Ximendes V, Alencar AMDS. Environments for seedling production and nodulation by rhizobia in Tachigali vulgaris. Ciênc Florest, 2019, 29(1): 116-129.

[21]

Demirbas A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit, 2002, 20(1): 105-111.

[22]

Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci, 2004, 30(2): 219-230.

[23]

Demolinari RA, Soares CPB, Leite HG, Souza AL. Growth of unthinned clonal eucalyptus plantations in the region of Monte Dourado (PA). Rev Árvore, 2007, 38(3): 503-512.

[24]

Eloy E, Caron BO, Silva DA, Souza VQ, Trevisa R, Behling A, Elli EF. Energy productivity of forest species in short rotation plantings. Ciênc Rural, 2015, 45(8): 1424-1431.

[25]

Eufrade-Junior HJ, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW. Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass Bioenergy, 2016, 90: 15-21.

[26]

Eufrade-Junior HJ, Guerra SPS, Sansígolo CA, Ballarin AW. Management of Eucalyptus short-rotation coppice and its outcome on fuel quality. Renew Energy, 2018, 121: 309-314.

[27]

Farias J, Marimon BS, Silva LCR, Petter FA, Andrade FR, Morandi PS, Marimon-Junior BH. Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla x Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For Ecol Manag, 2016, 368(9): 173-182.

[28]

Fernandes ERK, Marangoni C, Souza O, Sellin N. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag, 2013, 75(11): 603-608.

[29]

Fernandes C, Gaspar MJ, Pires J, Silva ME, Carvalho A, Brito JL, Lousada JL. Within and between-tree variation of wood density components in Pinus sylvestris at five sites in Portugal. Eur J Wood Wood Prod, 2017, 75: 511-526.

[30]

García R, Pizarro C, Lavín AG, Bueno JL. Characterization of Spanish biomass wastes for energy use. Biores Technol, 2012, 103(1): 249-258.

[31]

García R, Pizarro C, Lavín AG, Bueno JL. Biomass proximate analysis using thermogravimetry. Biores Technol, 2013, 139(1): 1-4.

[32]

García R, Pizarro C, Lavín AG, Bueno J. Spanish biofuels heating value estimation. Part I: Ultimate analysis data. Fuel, 2014, 117: 1130-1138.

[33]

Gil MV, González-Vázquez MP, García R, Rubiera F, Pevida C. Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Convers Manag, 2019, 184: 649-660.

[34]

Gominho J, Pereira H. The influence of tree spacing in heartwood content in Eucalyptus globulus Labill. Wood Fiber Sci, 2005, 37(4): 582-590.

[35]

Hauk S, Knoke T, Wittkopf S. Economic evaluation of short rotation coppice systems for energy from biomass - a review (2014). Renew Sustain Energy Rev, 2014, 29: 435-448.

[36]

Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N. Short-rotation woody crops for bioenergy and biofuels applications. Vitro Cell Dev Biol Plant, 2009, 45(6): 619-629.

[37]

Huang H, Yuan X. Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci, 2015, 49: 59-80.

[38]

Huang C, Han L, Yang Z, Liu X. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manag, 2009, 29(6): 1793-1797.

[39]

Hupa M, Karlström O, Vainio E. Biomass combustion technology development—it is all about chemical details. Proc Combust Inst, 2016, 36(1): 113-134.

[40]

Jiang L, Liang J, Yuan X, Li H, Li C, Xiao Z, Huang H, Zeng G. Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Biores Technol, 2014, 166: 435-443.

[41]

Jiang L, Yuan X, Xiao Z, Liang J, Li H, Cao L, Wang H, Chen X, Zeng G. A comparative study of biomass pellet and biomass-sludge mixed pellet: energy input and pellet properties. Energy Convers Manag, 2016, 126: 509-515.

[42]

Junior HJE, Melo RX, Sartori MMP, Guerra SPS, Ballarin AW. Sustainable use of Eucalyptus biomass grown on short rotation coppice for bioenergy. Biomass Bioenergy, 2016, 90(3): 15-21.

[43]

Kopp RF, Abrahamso NLP, White EH, Nowak CA, Zsuffa L, Burns KF. Wood grass spacing and fertilization effects on wood biomass production by a willow clone. Biomass Bioenergy, 1996, 11(6): 451-457.

[44]

Leles PSS, Machado TFF, Alonso JM, Andrade AM, Silva LL. Growth and biomass of Melia azedarach L. at different spacings and technological characteristics of wood for charcoal production. Floresta e Ambiente, 2014, 21(2): 214-223.

[45]

Lin CJ, Chung CH, Yang TH, Lin FC. Detection of electric resistivity tomography and evaluation of the sapwood-heartwood demarcation in three Asia gymnosperm species. Silva Fennica, 2012, 46(3): 415-424.

[46]

Mahishi MR, Goswami DY. Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen Energy, 2007, 32: 3831-3840.

[47]

Malan F, Hoon M. Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. S Afr For J, 1992, 163: 13-20.

[48]

Meneses VA, Trugilho PF, Calegario N, Leite HG. Effect of age and site on the basic density and dry mass of wood from a clone of Eucalyptus urophylla. Sci For, 2015, 43(105): 101-116.

[49]

Moulin JC, Arantes MDC, Oliveira JGL, Campinhos E, Gomes F, Vidaurre GB. Effect of Spacing, age and irrigation on the volume and basic density in Eucalyptus. Floresta e Ambiente, 2017, 24(1): 1-10.

[50]

Neto S, Reis GG, Reis MGF, Neves JCL. Biomass production and distribution in Eucalyptus camaldulensis Dehn. as influenced by fertilization and spacing. Rev Árvore, 2003, 27(1): 15-23.

[51]

Paula J. Anatomical characterization of seven woods from Amazonia for energy and paper production. Acta Amazonica, 2003, 33(2): 243-262.

[52]

Pereira BLC, Carneiro ACO, Carvalho AMML, Colodette JL, Oliveira AC, Fontes MPF. Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources, 2013, 8(3): 4574-4592.

[53]

Pereira BLC, Oliveira AC, Carvalho AMML, Carneiro ACO, Vital BR, Santos LC. Correlations among the heart/sapwood ratio of eucalyptus wood, yield and charcoal properties. Sci For, 2013, 41(98): 217-225.

[54]

Pereira DTO, Nobre JRC, Bianchi ML. Energy quality of waste from Brazil nut (Bertholletia excelsa), in the state of Pará. Braz J Dev, 2019, 5(4): 3258-3265.

[55]

Piotto D, Montagnini F, Ugalde L, Kanninen M. Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. For Ecol Manag, 2003, 175: 195-204.

[56]

Qiu Q, Yun G, Zuo S, Yan J, Hua L, Ren Y, Tang J, Li Y, Chen Q. Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China. J For Res, 2018, 5(29): 1263-1276.

[57]

Ramos LMA, Latorraca JVF, Pastro MS, Souza MT, Garcia RA, Carvalho AM. Radial variation of wood anatomical characters of Eucalyptus grandis W. Hill Ex Maiden and age of transition between adult and juvenile Wood. Sci For, 2011, 39(92): 411-418.

[58]

Reis AA, Protásio TP, Melo ICNA, Trugilho PF, Carneiro ACO. Wood composition and charcoal of Eucalyptus urophylla in different planting locations. Pesqui Florest Bras, 2012, 32(71): 277-290.

[59]

Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR. Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manag, 2019, 438: 63-74.

[60]

Rocha MFV, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG. Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. J Trop For Sci, 2016, 28(3): 243-248.

[61]

Santos RC, Carneiro ACO, Vital BR, Castro RVO, Vidaurre GB, Trugilho PF, Castro AFNM. Effect of properties chemical and siringil/guaiacil relation wood clones of eucalyptus in the production of charcoal. Ciênc Florest, 2016, 26(2): 657-669.

[62]

Schwerz F, Eloy E, Elli EF, Caron BO. Reduced planting spacing increase radiation use efficiency and biomass for energy in black wattle plantations: towards sustainable production systems. Biomass Bioenergy, 2019, 120: 229-239.

[63]

Silva L, Lima H. Nomenclatural changes in the genus Tachigali Aubl. (Leguminosae - Caesalpinioideae) in Brazil. Rodriguésia, 2007, 58(2): 397-401.

[64]

Silva JC, Matos JLM, Oliveira JTS, Evangelista WV. Influence of age and position along the trunk on the chemical composition of Eucalyptus grandis Hill ex. Maiden wood. Rev Árvore, 2005, 29(3): 455-460.

[65]

Silva AR, Gonçalves DA, Sales A. Tachi-branco performance in response to the combined fertilization of phosphorus and potassium in oxisol different. Acta Iguazu, 2016, 2(5): 37-48.

[66]

Simpson W, Tenwolde A (1999) Physical properties and moisture relations of wood. In: Forest Products Laboratory (ed) Wood handbook: wood as an engineering material. Forest Products Laboratory, Madison, pp 3–25

[67]

Souza AP, Gaspar M, Tiné MAS, Buckeridge MS. Biologia & mudanças climáticas no Brasil, 2008, São Carlos: Rima Editora 250

[68]

Sturion JA, Pereira JCD, Chemin MS. wood quality of Eucalyptus viminalis for energy purpose in function of spacing and harvesting age. Bol Pesqui Florest, 1988, 1(16): 55-59.

[69]

Telmo C, Lousada J, Moreira N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Biores Technol, 2010, 101(18): 3808-3815.

[70]

Tenorio C, Moya R, Arias-Aguilar D, Briceño-Elizondo E. Biomass yield and energy potential of short-rotation energy plantations of Gmelina arborea one year old in Costa Rica. Ind Crops Prod, 2016, 82: 63-73.

[71]

The Brazilian tree industry-IBA (2017). http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf. Accessed 17 March 2018

[72]

Tonini H, Schwengber DR, Morales MM, Oliveira JMF. Growth and wood energy quality of Tachigali vulgaris in different spacing. Braz J For Res, 2018, 38(1): 1-8.

[73]

Trugilho PF, Arantes MDC, Pádua FA, Almado RP, Baliza AER. Estimate of fixed carbon in the wood of a hybrid clone of Eucalyptus urophylla an Eucalyptus grandis. Cerne, 2010, 16(5): 33-40.

[74]

Trugilho PF, Goulart SL, Assis CO, Couto FBS, Alves ICN, Protásio TP, Napoli A. Growing characteristics chemical composition physical and dry mass estimated of wood in young Eucalyptus species and clones. Ciênc Rural, 2015, 45(4): 661-666.

[75]

Vale AT, Brasil MAM, Carvalho CM, Veiga RAA. Energy production of stem of Eucalyptus grandis Hill ex Maiden and Acacia mangium Willd in different levels of fertilization. Cerne, 2000, 6(1): 83-88.

[76]

Vale AT, Brasil MAM, Leão AL. Energetic quantification and characterization of wood and bark of species of “Cerrado”. Ciênc Florest, 2002, 1(12): 71-80.

[77]

Wu SJ, Xu JM, Li GY, Du ZH, Lu ZH, Li BQ. Age trends and correlations of growth and wood properties in clone of Eucalyptus urophylla ×  Eucalyptus grandis in Guangdong, China. J For Res, 2012, 23(3): 467-472.

[78]

Yin CY. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 2011, 90(3): 1128-1132.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/