Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks

Girmantė Jurkšienė , Oleg Yu. Baranov , Dmitry I. Kagan , Olja A. Kovalevič-Razumova , Virgilijus Baliuckas

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2445 -2452.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2445 -2452. DOI: 10.1007/s11676-019-01043-3
Original Paper

Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks

Author information +
History +
PDF

Abstract

This study was conducted to determine the parent–offspring genetic structure of the pedunculate oak (Quercus robur L.), sessile oak (Q. petraea [Matt.] Liebl.) and their hybrids. Forty half-sib Quercus families and their maternal trees originating from one tree stand in southern Lithuania were analyzed using SSR and RAPD markers. Based on a preliminary study of leaf morphological traits, the individuals separated into six groups. The studied half-sib oak families were also compared for allelic diversity, including group variations; genotypic structure; genetic diversity; and the degree of genetic subdivision and differentiation. The level of genetic variation and subdivision was lower in the hybrid families than in the families of the parental species. Genotypic analysis of the half-sibling offspring showed the asymmetric nature of interspecific hybridization processes of pedunculate and sessile oaks in mixed stands.

Keywords

Half-sib families / Interspecific oak hybrids / Microsatellites / Offspring / Simple sequence repeats (SSRs) / Randomly amplified polymorphic DNA (RAPD)

Cite this article

Download citation ▾
Girmantė Jurkšienė, Oleg Yu. Baranov, Dmitry I. Kagan, Olja A. Kovalevič-Razumova, Virgilijus Baliuckas. Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks. Journal of Forestry Research, 2019, 31(6): 2445-2452 DOI:10.1007/s11676-019-01043-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aas G (1996) Morphologische und ökologische variation mitteleuropäischer Quercus-Arten: Ein Beitragzum Verständnis der Biodiversität. Habilitation Thesis. ETH Zurich

[2]

Abadie P, Roussel G, Dencausse B, Bonnet C, Bertocchi E, Louvet JM, Kremer A, Garnier-Géré P. Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercusrobur L. and Quercuspetraea (Matt) Liebl.). J Evolut Biol, 2012, 25(1): 157-173.

[3]

Baliuckas V. Paprastojo (Q. robur L.) ir bekočio (Q. petraea (Matt.) Liebl.) ąžuolų introgresija Trako miške (Pedunculate and sessile oak species introgression in Trakas Forest). Bot Lith, 2000, 6(4): 375-387. (in Lithuanian with English abstract)

[4]

Brown AHD, Feldman MW. Population structure of multilocus associations. Proc Natl Acad Sci, 1981, 78(9): 5913-5916.

[5]

Degen B, Reinholdt B (1999) EICHE 1.0, Programm zur Unterscheidung von Stiel- und Traubeneiche anhand blattmorphologisher Merkmale (Program for the differentiation of pedunculate and sessile oak using morphological features). Institut für Forstgenetik Ökologische Genetik (in German)

[6]

Gillet EM (ed) (1999) Which DNA marker for which purpose? Final compendium of the research project development, optimisation and validation of molecular tools for assessment of biodiversity in forest trees in the European Union DGXII biotechnology FW IV research programme molecular tools for biodiversity, p 253

[7]

Gugerli F, Walser JC, Dounavi K, Holderegger R, Finkeldey R. Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercuspetraea and Q. robur in a mixed forest. Ann Bot, 2007, 99(4): 713-722.

[8]

Kleinschmit J. Intraspecific variation of growth and adaptive traits in European oak species. Ann sci for, 1993, 50(1): 166s-185s.

[9]

Kleinschmit JRG, Bacilier R, Kremer A, Roloff A. Comparison of morphological and genetic traits of pedunculate oak (Q. robur L.) and sessile oak (Q. petraea (Matt.) Liebl.). Silvae Genet, 1995, 44: 256-269.

[10]

Kremer A, Goenaga X. Preface. For Ecol Manag, 2002, 156: 1-3.

[11]

Kremer A, Petit RJ. Gene diversity in natural populations of oak species. Ann sci for, 1993, 50: 186s-202s.

[12]

Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479-532.

[13]

Lepais O, Gerber S. Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution, 2011, 65(1): 156-170.

[14]

Lu JJ, Perng CL, Lee SY, Wan CC. Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol, 2000, 38(6): 2076-2080.

[15]

Moreau F, Kleinschmit J, Kremer A. Molecular differentiation between Quercus petraea and Quercus robur assessed by random amplified DNA fragments. For Genet, 1994, 1(1): 51-64.

[16]

Muir G, Schlötterer C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol, 2005, 14(2): 549-561.

[17]

Nei M. Genetic distance between populations. Am Nat, 1972, 106: 283-292.

[18]

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89(3): 583-590.

[19]

Neophytou C, Aravanopoulos FA, Fink S, Dounavi A. Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. For Ecol Manag, 2010, 259: 2026-2035.

[20]

Padutov VE (2001) Geneticheskiye resursy sosny i yeli v Belarusi (Genetic resources of pine and spruce in Belarus). Gomel’ IL NANB, p 144 (in Russian)

[21]

Padutov VE, Baranov OY, Voropayev YV (2007) Metody molekulyarno-geneticheskogo analiza (Methods of molecular genetic analysis). Mn.:Yunipol, Belarus, p 176 (in Russian)

[22]

Petit RJ, Csaikl UM, Bordacs S, Burg K, Coart E, Cottrell J, van DamB Deans JD, Dumolin-Lapegue S, Fineschi S, Finkeldey R, Gillies A, Glaz I, Goicoechea PG, Jensen JS, Konig AO, Lowe AJ, Madsen SF, Matyas G, Munro RC, Olalde M, Pemonge MH, Popescu F, Slade D, Tabbener H, Taurchini D, de Vries SGM, Ziegenhagen B. Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag, 2003, 176(1–3): 595-599.

[23]

Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A. Hybridization as a mechanism of invasion in oaks. New Phytol, 2004, 161: 151-164.

[24]

Steinkellner H, Lexer C, Turetschek E. Conservation of (GA)(n) microsatellite loci between Quercus species. Mol Ecol, 1997, 6: 1189-1194.

[25]

White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. In: PCR–protocols and applications—a laboratory manual, vol 18, no 1. Academic Press, pp 315–322

[26]

Yeh FC (1999) POPGENE version 1.32, Microsoft window–base software for population genetic analysis: a quick user’s guide/FC Yeh, RC Yang, T Boyle. Edmonton, University of Alberta, Center for International Forestry Research, p 18

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/