Overexpression of PtPEPCK1 gene promotes nitrogen metabolism in poplar
Lina Wang , Miao He , Song Chen , Kean Wang , Donghai Cui , Xin Huang , Lijie Liu
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (6) : 2289 -2303.
Overexpression of PtPEPCK1 gene promotes nitrogen metabolism in poplar
To understand the function of phosphoenolpyruvate carboxylase kinase, we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar (Populus alba × P. glandulosa). PtPEPCK1 gene is well-known for its role in gluconeogenesis. However, our data confirmed that it has significant effects on amino acid biosynthesis and nitrogen metabolism. Immunohistochemistry and fluorescence microscopy indicate that PtPEPCK1 is specifically expressed in the cytoplasm of the spongy and palisade tissues. Overexpression of PtPEPCK1 was characterized through transcriptomics and metabolomics. The metabolites concentration of the ornithine cycle and its precursors also increased, of which N-acetylornithine was up-regulated almost 50-fold and ornithine 33.7-fold. These were accompanied by a massive increase in levels of several amino acids. Therefore, overexpression of PtPEPCK1 increases amino acid levels with urea cycle disorder.
Amino acid metabolism / Metabolome / Nitrogen metabolism / Phosphoenolpyruvate carboxylase kinase / Transcriptome / Urea cycle
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Majumdar R, Minocha R, Minocha SC, D’Mello JPF (2015) Ornithine: at the crossroads of multiple paths to amino acids and polyamines. CAB International, pp 156–172 |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
Yu ZH (2012) Research and application of HPCE-TOF/MS technology in the analysis of common toxic alkaloids. Doctoral dissertation, Fudan University, pp 8–11 |
| [51] |
|
| [52] |
Zhao JX (2016) A new method based on CE-MS for metabolomics analysis and its application in tobacco research. Doctoral dissertation, Dalian University of Technology, pp 43–45 |
/
| 〈 |
|
〉 |