Douglas-fir climate sensitivity at two contrasting sites along the southern limit of the European planting range

Cristiano Castaldi , Maurizio Marchi , Giorgio Vacchiano , Piermaria Corona

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2193 -2204.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2193 -2204. DOI: 10.1007/s11676-019-01041-5
Original Paper

Douglas-fir climate sensitivity at two contrasting sites along the southern limit of the European planting range

Author information +
History +
PDF

Abstract

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is an important exotic tree species that was planted across a large part of Europe during the last century. In both experimental trials and conventional forest plantations, the trees grow at a high rate and produce high-quality timber. The present study investigated climate-growth relationships of Douglas-fir at two Italian sites that contrast in climate: a Mediterranean area in southern Italy (Mercurella site) and a cooler, moister site in the northern Apennines without summer aridity (Acquerino). The relationship between tree-ring chronologies and monthly climatic variables was evaluated by a moving average and correlation analysis. Results showed that the minimum temperature in February and in March play a key role for Douglas-fir at both sites, with a positive effect on growth. At the northern site, it is also highly sensitive to late summer temperatures (negative correlation) and spring–summer precipitation (positive correlation). Growth rates in southern latitudes were high even in Europe and in the Mediterranean environment, with low sensitivity to climatic fluctuation. On the basis of our results, further common garden experiments should test adaptation and the interaction between genetics and environment of second- or third-generation seeds from old stands across Europe such as done by the old International Union of Forest Research Organizations (IUFRO) or the European Douglas-fir Improvement Research Cooperative (EUDIREC) experimentation programmes.

Keywords

Pseudotsuga menziesii / Tree ring analysis / Dendroclimatology / Forest plantations / Exotic forest species

Cite this article

Download citation ▾
Cristiano Castaldi, Maurizio Marchi, Giorgio Vacchiano, Piermaria Corona. Douglas-fir climate sensitivity at two contrasting sites along the southern limit of the European planting range. Journal of Forestry Research, 2019, 31(6): 2193-2204 DOI:10.1007/s11676-019-01041-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl, 2008, 1: 95-111.

[2]

Avanzi C, Piermattei A, Piotti A, Büntgen U, Heer K, Opgenoorth L, Spanu I, Urbinati C, Vendramin GG, Leonardi S. Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. Sci Total Environ, 2019, 650: 493-504.

[3]

Avolio S, Bernardini V. La parcella sperimentale N 412 di douglasia verde di Pavari nella Catena Costiera calabra a settant’anni dall’impianto [The experimental plot N 412 of green Douglas fir in the coastal mountain chain after seventy years from its establishment]. Ann Silvic Res, 2000, 31: 119-136.

[4]

Benito Garzón M, Robson TM, Hampe A. ΔTraitSDM: species distribution models that account for local adaptation and phenotypic plasticity. New Phytol, 2019

[5]

Biondi F, Qeadan F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree Ring Res, 2008, 64: 81-96.

[6]

Biondi F, Waikul K. DENDROCLIM2002: a C ++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci, 2004, 30: 303-311.

[7]

Boiffin J, Badeau V, Bréda N. Species distribution models may misdirect assisted migration: insights from the introduction of Douglas-fir to Europe. Ecol Appl, 2017, 27: 446-457.

[8]

Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci, 2006, 63: 625-644.

[9]

Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998, 391: 678-682.

[10]

Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA. Low-frequency temperature variations from a northern tree ring density network. J Geophys Res, 2001, 106: 2929.

[11]

Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K. Statistical mapping of tree species over Europe. Eur J For Res, 2012, 131: 145-157.

[12]

Bunn AG, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C (2012) dplR: Dendrochronology program library in R. R Package Version 1.5.4., http://CRAN.R-project.org/package=dplR. Accessed 3 Sept 2018

[13]

Case MJ, Peterson DL. Fine-scale variability in growth-climate relationships of Douglas-fir, North Cascade Range, Washington. Can J For Res, 2005, 35: 2743-2755.

[14]

Castaldi C, Vacchiano G, Marchi M, Corona P. Projecting nonnative Douglas fir plantations in southern Europe with the forest vegetation simulator. For Sci, 2017, 63: 101-110.

[15]

Chen PY, Welsh C, Hamann A. Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change. Glob Change Biol, 2010, 16: 3374-3385.

[16]

Corona P. Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environ Res, 2016, 144: 8-14.

[17]

Costantini E, Barbetti R, Fantappiè M, L’Abate G, Lorenzetti R, Napoli R, Marchetti A, Rivieccio R (2014) The soil map of Italy a hierarchy of geodatabases, from soil regions to sub-systems. In: GlobalSoilMap basis of the global spatial soil information system, pp 109–112 https://doi.org/10.1201/b16500-23

[18]

Ducci F, Tocci A. Primi risultati della sperimentazione IUFRO 1969-70 su Pseudotsuga menziesii (Mirb) Franco nell’appennino centro-settentrionale [First results of IUFRO/1969-70 experimentation on Pseudotsuga menziesii (Mirb) Franco in Northern and Central Apennines]. Ann dell’Istituto Sper per la Selvic, 1987, 18: 215-289.

[19]

Eilmann B, Rigling A. Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol, 2012, 32: 178-187.

[20]

Eilmann B, de Vries SMG, den Ouden J, Mohren GMJ, Sauren P, Sass-Klaassen U. Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb)) provenances. For Ecol Manag, 2013, 302: 133-143.

[21]

Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ, 2014, 154: 102-114.

[22]

Ferrara C, Marchi M, Fares S, Salvati L. Sampling strategies for high quality time-series of climatic variables in forest resource assessment. iForest, 2017, 10: 739-745.

[23]

Gričar J, Prislan P, de Luis M, Gryc V, Hacurová J, Vavrčík H, Čufar K. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front Plant Sci, 2015, 6: 1-14.

[24]

Griesbauer HP, Green DS. Assessing the climatic sensitivity of Douglas-fir at its northern range margins in British Columbia, Canada. Trees, 2010, 24: 375-389.

[25]

Hampe A, Petit RJ. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett, 2005, 8: 461-467.

[26]

Härdtle W, Niemeyer T, Fichtner A, Li Y, Ries C, Schuldt A, Walmsley D, von Oheimb G. Climate imprints on tree-ring δ15 N signatures of sessile oak (Quercus petraea Liebl) on soils with contrasting water availability. Ecol Indic, 2014, 45: 45-50.

[27]

Hermann RK, Lavender DP. Douglas-fir planted forests. New For, 1999, 17: 53-70.

[28]

Hintsteiner WJ, van Loo M, Neophytou C, Schueler S, Hasenauer H. The geographic origin of old Douglas-fir stands growing in Central Europe. Eur J For Res, 2018, 0: 1-15.

[29]

Howe GT, Jayawickrama K, Cherry M, Johnson GR, Wheeler NC. Breeding Douglas-fir, 2010, Oxford: Wiley 245 353

[30]

Isaac-Renton MG, Roberts DR, Hamann A, Spiecker H. Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change. Glob Change Biol, 2014, 20: 2607-2617.

[31]

Lipow SR, Johnson GR, St Clair JB, Jayawickrama KJ. The role of tree improvement programs for Ex situ gene conservation of coastal Douglas-fir in the Pacific Northwest. For Genet, 2003, 10: 111-120.

[32]

Littell JS, Peterson DL, Tjoelker M. Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol Monogr, 2008, 78: 349-368.

[33]

Maca P, Pech P (2016) Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Comput Intell Neurosci 1–17

[34]

Marchi M. Nonlinear versus linearised model on stand density model fitting and stand density index calculation: analysis of coefficients estimation via simulation. J For Res, 2019, 1: 2-3.

[35]

Marchi M, Ducci F. Some refinements on species distribution models using tree-level national forest inventories for supporting forest management and marginal forest population detection. iForest, 2018, 11: 291-299.

[36]

Marchi M, Castaldi C, Merlini P, Nocentini S, Ducci F. Stand structure and influence of climate on growth trends of a Marginal forest population of Pinus nigra spp nigra. Ann Silvic Res, 2015, 39: 100-110.

[37]

Mathys A, Coops NC, Waring RH. Soil water availability effects on the distribution of 20 tree species in western North America. For Ecol Manag, 2014, 313: 144-152.

[38]

Mazza G, Gallucci V, Manetti MC, Urbinati C. climate-growth relationships of silver fir (Abies alba Mill) in marginal populations of Central Italy. Dendrochronologia, 2014, 32: 181-190.

[39]

Mazza G, Sarris D, Chiavetta U, Ferrara RM, Rana G. An intra-stand approach to identify intra-annual growth responses to climate in Pinus nigra subsp. laricio Poiret trees from southern Italy. For Ecol Manag, 2018, 425: 9-20.

[40]

Metzger MJ, Bunce RG, Jongman RH, Sayre R, Trabucco A, Zomer R. High-resolution bioclimate map of the world. Global Ecol Biogeogr, 2013, 22: 630-638.

[41]

Pecchi M, Marchi M, Giannetti F, Bernetti I, Bindi M, Moriondo M, Maselli F, Fibbi L, Corona P, Travaglini D, Chirici G. Reviewing climatic traits for the main forest tree species in Italy. iForest, 2019, 12: 173-180.

[42]

Piotti A, Leonarduzzi C, Postolache D, Bagnoli F, Spanu I, Brousseau L, Urbinati C, Leonardi S, Vendramin GG, Urfm UR. Unexpected scenarios from Mediterranean refugial areas: disentangling complex demographic dynamics along the Apennine distribution of silver fir. J Biogeogr, 2017, 44: 1547-1558.

[43]

Poschenrieder W, Biber P, Pretzsch H. An inventory-based regeneration biomass model to initialize landscape scale simulation scenarios. Forests, 2018, 9: 212.

[44]

Provan J, Maggs CA. Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc Biol Sci, 2012, 279: 39-47.

[45]

Rais A, van de Kuilen JWG, Pretzsch H. Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb] Franco) under acute drought stress in Southern Germany. Eur J For Res, 2014, 133: 1043-1056.

[46]

Rebetez M, Mayer H, Dupont O. Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci, 2006, 63: 569-577.

[47]

Rehfeldt GE, Jaquish BC, López-upton J, Sáenz-romero C, St JB, Leites LP, Joyce DG. Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: realized climate niches. For Ecol Manag, 2014, 324: 138-146.

[48]

Rita A, Gentilesca T, Ripullone F, Todaro L, Borghetti M. Differential climate-growth relationships in Abies alba Mill and Fagus sylvatica L in Mediterranean mountain forests. Dendrochronologia, 2014, 32: 220-229.

[49]

Schmid M, Pautasso M, Holdenrieder O. Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe. Eur J For Res, 2014, 133: 13-29.

[50]

Sergent AS, Rozenberg P, Bréda N. Douglas-fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites. Ann For Sci, 2014, 71: 697-708.

[51]

Smith B, Knorr W, Widlowski JL, Pinty B, Gobron N. Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. For Ecol Manag, 2008, 255: 3985-3994.

[52]

Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque Á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, Van Mantgem PJ, Wang X, Wiser SK, Zavala MA. Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507: 90-93.

[53]

Thurm EA, Uhl E, Pretzsch H. Mixture reduces climate sensitivity of Douglas-fir stem growth. For Ecol Manag, 2016, 376: 205-220.

[54]

Trouet V, Van Oldenborgh GJ. KNMI climate explorer: a web-based research tool for high-resolution paleoclimatology. Tree Ring Res, 2013, 69: 3-13.

[55]

Vejpustková M, Čihák T. Climate response of douglas fir reveals recently increased sensitivity to drought stress in central Europe. Forests, 2019, 10: 97.

[56]

Wang TL, Campbell EM, O’Neill GA, Aitken SN. Projecting future distributions of ecosystem climate niches: uncertainties and management applications. For Ecol Manage, 2012, 279: 128-140.

[57]

Watson E, Luckman BH. The dendroclimatic signal in Douglas-fir and ponderosa pine tree-ring chronologies from the southern Canadian Cordillera. Can J For Res, 2002, 32: 1858-1874.

[58]

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol, 1984

[59]

Yamaguchi DK, Cook ER, Kairiukstis LA. Methods of dendrochronology, applications in the environmental sciences. Arct Alp Res, 1991, 23: 120.

[60]

Zang C, Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography (Cop), 2015, 38: 431-436.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/