Morphological and phylogenetical analysis reveals that a new tapeworm species (Cestoda: Hymenolepididae) from whooper swan belongs to Cloacotaenia not Hymenolepis

Zhijun Hou , Lei Han , Ying Sun , Dongdong Shen , Zhiwei Peng , Lixin Wang , Qian Zhai , Yanqiang Zhou , Yaxian Lu , Liwei Teng , Hongliang Chai

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2581 -2587.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2581 -2587. DOI: 10.1007/s11676-019-01036-2
Original Paper

Morphological and phylogenetical analysis reveals that a new tapeworm species (Cestoda: Hymenolepididae) from whooper swan belongs to Cloacotaenia not Hymenolepis

Author information +
History +
PDF

Abstract

During a helminthological study of waterfowl in China, a new species (Cloacotaenia cygnimorbus sp. nov.) of hymenolepidid cestodes (tapeworm) was found in the small intestine of whooper swan (Cygnus cygnus, Linnaeus, 1758). The rudimentary rostellum and four unarmed muscular suckers, proglottids with distinct craspedote and three spherical testes were coincident with the characters of Cloacotaenia or Hymenolepis, but phylogenetic analysis of 28S rRNA and cox1 gene revealed that the new species is Cloacotaenia rather than Hymenolepis. Its morphology was also clearly differentiated from C. megalops in the arrangement of its testes in a triangle instead of in line and the cirrus unarmed rather than spined. Compared with C. megalops, the new species has more elongated neck, much larger mature proglottids and much smaller testes, cirrus sac, ovary, vitellarium and uterine proglottid. In addition, it infected the host intestine not the cloacae. Phylogenetic analysis of cox1 gene of the new species shows that it had a level of sequence variation (10.52–23.06%) with the sequences of C. megalops. The considerable morphological and molecular differences between those two parasites support C. cygnimorbus sp. nov. as a new species.

Keywords

Cloacotaenia / Hymenolepididae / Hymenolepis / Whooper swan / 28S rRNA / cox1

Cite this article

Download citation ▾
Zhijun Hou, Lei Han, Ying Sun, Dongdong Shen, Zhiwei Peng, Lixin Wang, Qian Zhai, Yanqiang Zhou, Yaxian Lu, Liwei Teng, Hongliang Chai. Morphological and phylogenetical analysis reveals that a new tapeworm species (Cestoda: Hymenolepididae) from whooper swan belongs to Cloacotaenia not Hymenolepis. Journal of Forestry Research, 2019, 31(6): 2581-2587 DOI:10.1007/s11676-019-01036-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blaxter ML, De LP, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK. A molecular evolutionary framework for the phylum nematoda. Nature, 1998, 392: 71-75.

[2]

Blouin MS. Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol, 2002, 32: 527-531.

[3]

Caira JN, Jensen K. Planetary biodiversity inventory (2008–2017): tapeworms from vertebrate bowels of the earth, 2017, Lawrence: Natural History Museum.

[4]

Casanova JC, Santalla F, Durand P, Vaucher C, Feliu C, Renaud F. Morphological and genetic differentiation of Rodentolepis straminea (Goeze, 1752) and Rodentolepis Microstoma (Dujardin, 1845) (Hymenolepididae). Parasitol Res, 2001, 87: 439-444.

[5]

Czaplinski B, Vaucher C. Khalil LF, Jones A, Bray RA. Family hymenolepididae ariola, 1899. Keys to the cestode parasites of vertebrates, 1994, Cambridge: Commonwealth Agricultural Bureaux International 595 663

[6]

Green AJ, Georgiev BB, Brochet AL, Gauthier-Clerc M, Fritz H, Guillemain M. Determinants of the prevalence of the cloacal cestode Cloacotaenia megalops in teal wintering in the French Camargue. Eur J Wildl Res, 2011, 57: 275-281.

[7]

Greiman SE, Tkach VV. Description and phylogenetic relationships of Rodentolepis gnoskei n. sp. (Cyclophyllidea: Hymenolepididae) from a shrew Suncus varilla minor in Malawi. Parasitol Int, 2012, 61: 343-350.

[8]

Guo A. Characterization of the complete mitochondrial genome of the cloacal tapeworm Cloacotaenia megalops (Cestoda: Hymenolepididae). Parasites Vectors, 2016, 9: 490.

[9]

Haukisalmi V, Hardman LM, Foronda P, Feliu C, Laakkonen J, Niemimaa J, Lehtonen JT, Henttonen H. Systematic relationships of Hymenolepidid cestodes of rodents and shrews inferred from sequences of 28S ribosomal RNA. Zool Scr, 2010, 39: 631-641.

[10]

Haukos DA, Neaville J. Spatial and temporal changes in prevalence of a cloacal cestode in wintering waterfowl along the Gulf Coast of Texas. J Wildl Dis, 2003, 39: 152-160.

[11]

Hu M, Chilton NB, Zhu X, Gasser RB. Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis, 2002, 23: 27-34.

[12]

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 2013, 30: 772-780.

[13]

Makarikov AA, Mel'nikova YA, Tkach VV. Description and phylogenetic affinities of two new species of Nomadolepis (Eucestoda, Hymenolepididae) from Eastern Palearctic. Parasitol Int, 2015, 64: 453-463.

[14]

Mariaux J. A molecular phylogeny of the Eucestoda. J Parasitol, 1998, 84: 114-124.

[15]

Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ. Development of primers for the mitochondrial cytochrome c oxidase i gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour, 2009, 9(Suppl s1): 75-82.

[16]

Muniz-Pereira LC, Amato SB. Fimbriaria fasciolaris and Cloacotaenia megalops (Eucestoda, Hymenolepididae), cestodes from Brazilian waterfowl. Mem Inst Oswaldo Cruz, 1998, 93: 767-772.

[17]

Nowak MR, Krolaczyk K, Kavetska KM, Pilarczyk B. Morphological features of Cloacotaenia megalops (Nitzsch in Creplin, 1829) (Cestoda, Hymenolepididae) from different hosts. Wiad Parazytol, 2011, 57: 31-36.

[18]

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics, 1998, 14: 817-818.

[19]

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572-1574.

[20]

Sharma S, Lyngdoh D, Roy B, Tandon V. Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker. Parasitol Res, 2016, 115: 4293-4298.

[21]

Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol, 2007, 56: 564-577.

[22]

Zehnder MP, Mariaux J. Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. Int J Parasitol, 1999, 29: 1841-1852.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/