Small-scale edaphic heterogeneity as a floristic–structural complexity driver in Seasonally Dry Tropical Forests tree communities

Cléber Rodrigo de Souza , Jean Daniel Morel , Alisson Borges Miranda Santos , Wilder Bento da Silva , Vinícius Andrade Maia , Polyanne Aparecida Coelho , Vanessa Leite Rezende , Rubens Manoel dos Santos

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2347 -2357.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2347 -2357. DOI: 10.1007/s11676-019-01013-9
Original Paper

Small-scale edaphic heterogeneity as a floristic–structural complexity driver in Seasonally Dry Tropical Forests tree communities

Author information +
History +
PDF

Abstract

Our work aimed to test the hypothesis that soil microscale heterogeneity act as a community ecological driver, increasing diversity and promoting structural shifts on the Seasonally Dry Tropical Forest (SDTF) tree community. We evaluated the relationship between microscale edaphic variations and floristic–structural patterns of tree communities in a SDTF fragment located in the southern end of the Brazilian Caatinga domain. Vegetation and soil data were obtained through 27 sample units of 400 m2 (20 m × 20 m), within each one we measured and identified at species level all arboreal individuals with Circumference at the Breast Height greater or equal to 10 cm, and also collected the soil samples. Through the data we evaluated soil variation influence on the tree community structural and floristic patterns trough generalized linear models.Soil explained the small-scale structural and floristic variations, contributing significantly to biomass, sprouting and to floristic relationships between sample units. It was also observed a possible relation of the result with the Caatinga domain biogeographic history, due the presence of Sedimentary Caatinga species, which are not expected for the study region. Soil plays an important role in driving small-scale complexity and diversity of SDTF, but we also suggest that Caatinga biogeographic events have influence on the high heterogeneity patterns.

Keywords

Caatinga domain / Edaphic variables / Sprouting / Sedimentary Caatinga

Cite this article

Download citation ▾
Cléber Rodrigo de Souza, Jean Daniel Morel, Alisson Borges Miranda Santos, Wilder Bento da Silva, Vinícius Andrade Maia, Polyanne Aparecida Coelho, Vanessa Leite Rezende, Rubens Manoel dos Santos. Small-scale edaphic heterogeneity as a floristic–structural complexity driver in Seasonally Dry Tropical Forests tree communities. Journal of Forestry Research, 2019, 31(6): 2347-2357 DOI:10.1007/s11676-019-01013-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ab'Saber A. O domínio morfoclimático semiárido das caatingas brasileiras, 1974, São Paulo: Universidade de São Paulo.

[2]

Allen K, Dupuy JM, Gei MG, Hulshof C, Medvigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, Van Bloem SJ, Waring BG, Xu X, Powers JS. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. Environ Res Lett, 2017 12 2 023001

[3]

Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc, 2016, 181: 1-20.

[4]

Apgaua DMG, Coelho PA, Santos RMD, Santos PF, Oliveira-Filho ATD. Tree community structure in a seasonally dry tropical forest remnant, Brazil. Cerne, 2014, 20(2): 173-182.

[5]

Apgaua DMG, Pereira DGS, Santos RM, Menino GCO, Pires GG, Fontes MAL, Tng DYP. Floristic variation within seasonally dry tropical forests of the Caatinga Biogeographic Domain, Brazil, and its conservation implications. Int For Rev, 2015, 17(S2): 33-44.

[6]

Arruda DM, Fernandes-Filho EI, Solar RR, Schaefer CE. Combining climatic and soil properties better predicts covers of Brazilian biomes. Sci Nat, 2017 104 3–4 32

[7]

Bagousse-Pinguet YL, Gross N, Maestre FT, Maire V, Bello F, Fonseca CR, Kattge J, Valencia E, Leps J, Liancourt P. Testing the environmental filtering concept in global drylands. J Ecol, 2017, 105: 1058-1069.

[8]

Baker TR, Phillips OL, Laurance WF, Pitman NCA, Almeida S, Arroyo L, DiFiore A, Erwin T, Higuchi N, Killeen TJ, Laurance SG, Nascimento H, Monteagudo A, Neill DA, Silva JNM, Malhi Y, López-Gonzalez G, Peacock J, Quesada CA, Lewis SL, Lloyd J. Do species traits determine patterns of wood production in Amazonian forests?. Biogeosciences, 2009, 6: 297-307.

[9]

Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr, 2010, 19(1): 134-143.

[10]

Baselga A (2013) Betapart-package: partitioning beta diversity into turnover and nestedness components. R package version 1.3. https://CRAN.R-project.org/package=betapart. Accessed 19 April 2017

[11]

Becknell JM, Powers JS. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can J For Res, 2014, 44(6): 604-613.

[12]

Becknell JM, Kucek LK, Powers JS. Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. For Ecol Manag, 2012, 276: 88-95.

[13]

Bohlman SA, Laurance WF, Laurance SG, Nascimento HE, Fearnside PM, Andrade A. Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. J Veg Sci, 2008, 19(6): 863-874.

[14]

Bond WJ, Midgley JJ. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol, 2001, 16(1): 45-51.

[15]

Bond WJ, Midgley JJ. The evolutionary ecology of sprouting in woody plants. Int J Plant Sci, 2003, 164(S3): S103-S114.

[16]

Bueno ML, Dexter KG, Pennington RT, Pontara V, Neves DM, Ratter JA, Oliveira-Filho AT. The environmental triangle of the Cerrado Domain: ecological factors driving shifts in tree species composition between forests and savannas. J Ecol, 2018, 106(5): 2109-2120.

[17]

Cadotte MW, Tucker CM. Should environmental filtering be abandoned?. Trends Ecol Evol, 2017, 32(6): 429-437.

[18]

Castellanos-Castro C, Newton AC. Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica, 2015, 47(6): 660-671.

[19]

Ceccon E, Sánchez S, Campo J. Tree seedling dynamics in two abandoned tropical dry forests of differing successional status in Yucatán, Mexico: a field experiment with N and P fertilization. Plant Ecol, 2004, 170(2): 277-285.

[20]

Ceccon E, Huante P, Rincón E. Abiotic factors influencing tropical dry forests regeneration. Braz Arch Biol Technol, 2006, 49(2): 305-312.

[21]

Chapin S III, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K. The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J Ecol, 2009, 97(5): 840-850.

[22]

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol, 2014, 20: 3177-3190.

[23]

Chesson P. Mechanisms of maintenance of species diversity. Ann Rev Ecol Syst, 2000, 31(1): 343-366.

[24]

Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuuring H. Prediction of neotropical tree and liana species richness from soil and climatic data. Biodivers Conserv, 1995, 4(1): 56-90.

[25]

DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 2016, 353(6306): 1383-1387.

[26]

Gómez-Aparicio L, Jose M, Zamora R. Microhabitats shift rank in suitability for seedling establishment depending on habitat type and climate. J Ecol, 2005, 93(6): 1194-1202.

[27]

Harms KE, Condit R, Hubbell SP, Foster RB. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol, 2001, 89(6): 947-959.

[28]

Hart S, Marshall DJ. Environmental stress, facilitation, competition, and coexistence. Ecology, 2013, 94(12): 2719-2731.

[29]

Huston M. Soil nutrients and tree species richness in Costa Rican forests. J Biogeogr, 1980, 7(2): 147-157.

[30]

Hutchings MJ, John EA, Wijesinghe DK. Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 2003, 84(9): 2322-2334.

[31]

IPCC. Climate change 2013: the physical science basis: Working Group I contribution to the 5th assessment report of the Intergovernmental Panel on Climate Change, 2014, London: Cambridge University Press.

[32]

Jenny H. The soil resource origin and behaviour. Ecological studies, 1980, Berlin: Springer

[33]

John R, Dalling JH, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB. Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci, 2007, 104(3): 864-869.

[34]

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A, 2016 374 2065 20150202

[35]

Jones MM, Szyska B, Kessler M. Microhabitat partitioning promotes plant diversity in a tropical montane forest. Glob Ecol Biogeogr, 2011, 20(4): 558-569.

[36]

Krishnadas M, Kumar A, Comita LS. Environmental gradients structure tropical tree assemblages at the regional scale. J Veg Sci, 2016, 27(6): 1117-1128.

[37]

Lai J, Mi X, Ren H, Ma K. Species-habitat associations change in a subtropical forest of China. J Veg Sci, 2009, 20(3): 415-423.

[38]

Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 2010, 91(2): 386-398.

[39]

Markesteijn L, Iraipi J, Bongers F, Poorte L. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J Trop Ecol, 2010, 26(5): 497-508.

[40]

Meinders M, Van Breemen N. Lovett GM, Jones C, Turner MG, Weathers KC. Formation of soil–vegetation patterns. Ecosystem function in heterogeneous landscapes, 2005, New York: Springer 207 227

[41]

Moreira B, Tormo J, Pausas JG. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos, 2012, 121(10): 1577-1584.

[42]

Moro MF, Lughadha EN, Filer DL, Araújo FS, Martins FR. A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: a synthesis of floristic and phytosociological surveys. Phytotaxa, 2014, 160(1): 1-118.

[43]

Moro MF, Lughadha EN, Araújo FS, Martins FR. A phytogeographical metaanalysis of the semiarid Caatinga domain in Brazil. Bot Rev, 2016, 82(2): 91-148.

[44]

Munoz F, Ramesh BR, Couteron P. How do habitat filtering and niche conservatism affect community composition at different taxonomic resolutions?. Ecology, 2014, 95(8): 2179-2191.

[45]

Neves DM, Dexter KG, Pennington RT, Valente ASM, Bueno ML, Eisenlohr PV, Fontes MAL, Miranda PLS, Moreira SN, Rezende VL, Saiter FZ, Oliveira-Filho AT. Dissecting a biodiversity hotspot: the importance of environmentally marginal habitats in the Atlantic Forest Domain of South America. Divers Distrib, 2017, 23(8): 898-909.

[46]

Oksanen J, Blanchet FJ, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2.4-2. https://cran.r-project.org/package=vegan. Acessed 19 april 2017.

[47]

Oliveira-Filho AT (2017) NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. www.icb.ufmg.br/treeatlan. Accessed 19 April 2017

[48]

Oliveira-Filho AT, Ratter JA. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot, 1995, 52(2): 141-194.

[49]

Pausas JG, Austin MP. Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci, 2001, 12(2): 153-166.

[50]

Pausas JG, Keeley JE. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol, 2014, 204(1): 55-65.

[51]

Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S, Kaneakua-Pia IN, Davis SD. Towards understanding resprouting at the global scale. New Phytol, 2016, 209(3): 945-954.

[52]

Peña-Claros M, Poorter L, Alarcón A, Blate G, Choque U, Fredericksen TS, Justiniano MJ, Leaño C, Licona JC, Pariona W, Putz FE, Quevedo L, Toledo M. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica, 2012, 44(3): 276-283.

[53]

Pennington RT, Prado DE, Pendry CA. Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr, 2000, 27(2): 261-273.

[54]

Pennington RT, Lavin M, Oliveira-Filho A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst, 2009, 40(1): 437-457.

[55]

Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sánchez WG, Yli-Halla M, Rose S. Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol, 2003, 91(5): 757-775.

[56]

Pinho BX, Melo FPL, Arroyo-Rodríguez V, Pierce S, Lohbeck M, Tabarelli M. Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. J Ecol, 2017, 2017: 1-11.

[57]

Poulsen AD, Tuomisto H, Balslev H. Edaphic and floristic variation within a 1-ha plot of lowland amazonian rain forest. Biotropica, 2006, 38(4): 468-478.

[58]

Prado DE, Gibbs PE. Patterns of species distributions in the dry seasonal forests of South America. Ann Mo Bot Gard, 1993, 80(4): 902-927.

[59]

Putten WHV, Bradford MA, Brinkman EP, van de Voorde TFJ, Veen GF. Where, when and how plant–soil feedback matters in a changing world. Funct Ecol, 2016, 30(7): 1109-1121.

[60]

Queiroz LP. Pennington RT, Lewis GP, Ratter JA. The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. Neotropical savannas and dry forests: plant diversity, biogeography, and conservation, 2006, Boca Raton: CRC Press 113 149

[61]

R version 3.3.1 (2016) "Bug in Your Hair" Copyright (C). The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit). https://wallace.teorekol.lu.se/statistics_for_biologists/01/R%20output%20ex1%20ht16.pdf. Accessed 19 April 2017

[62]

Reis GH, Terra MS, Tng DP, Apgaua DMG, Coelho PA, Santos RM, Nunes YF. Temporal vegetation changes in a seasonally dry tropical forest enclave in an ecotonal region between savanna and semiarid zones of Brazil. Aust J Bot, 2017 65 1 85

[63]

Rejou-Mechain M, Tanguy A, Piponiot C, Chave J, Hérault B. Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol, 2017, 8(9): 1163-1167.

[64]

Ribeiro-Neto JD, Arnan X, Tabarelli M, Leal IR. Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodivers Conserv, 2016, 25(5): 943-956.

[65]

Rito KF, Tabarelli M, Leal IR. Euphorbiaceae responses to chronic anthropogenic disturbances in Caatinga vegetation: from species proliferation to biotic homogenization. Plant Ecol, 2017, 218(6): 749-759.

[66]

Sander J, Wardell-Johnson G. Fine-scale patterns of species and phylogenetic turnover in a global biodiversity hotspot: implications for climate change vulnerability. J Veg Sci, 2011, 22(5): 766-780.

[67]

Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M. Caatinga: the scientific negligence experienced by a dry tropical forest. Trop Conserv Sci, 2011, 4(3): 276-286.

[68]

Santos RM, Oliveira-Filho AT, Eisenlohr PV, Queiroz LP, Cardoso DBOS, Rodal MJN. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecol Evol, 2012, 2: 409-428.

[69]

Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J, Sampaio EVSB, Ometto JPHB, Menezes RSC, Oliveira AFM, Pompelli MF, Antonino ACD. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theor Exp Plant Physiol, 2014, 26: 83-99.

[70]

Scolforo JRS, Mello JM. Inventário Florestal, 1997, Lavras: UFLA-FAEPE.

[71]

Seiler C, Hutjes RWA, Kruijt B, Hickler T. The sensitivity of wet and dry tropical forests to climate change in Bolivia. J Geophys Res Biogeosci, 2015, 120: 399-413.

[72]

Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD. Scale dependence of vegetation–environment relationships: a meta-analysis of multivariate data. J Veg Sci, 2012, 23(5): 942-951.

[73]

Sollins P. Factors influencing species composition in tropical lowland rain forest: does soil matter?. Ecology, 1998, 79(1): 23-30.

[74]

Sunderland TCH, Apgaua D, Baldauf C, Blackie R, Colfer CJP, Cunningham AB, Dexter K, Djoudi H, Gautier D, Gumbo D, Ickowitz A, Kassa H, Parthasarathy N, Pennington RT, Paumgarten F, Pulla S, Sola P, Tng D, Waeber P, Wilmé L. Global dry forests: a prologue. Int For Rev, 2015, 17(S2): 1-9.

[75]

Tricart J. Douglas I, Spencer T. Evidence of Upper Pleistocene dry climates in Northern South America. Environmental change and tropical geomorphology, 1985, London: Allen & Unwin 197 217

[76]

Tuomisto H, Ruokolainen K, Poulsen AD, Moran RC, Quintana C, Cañas G, Celi J. Distribution and diversity of Pteridophytes and Melastomataceae along edaphic gradients in Yasuní National Park, Ecuadorian Amazon. Biotropica, 2002, 34(4): 516-533.

[77]

Velloso AL, Sampaio EVSB, Pareyn FGC. Ecorregiões: Propostas para o bioma Caatinga, 2002, Recife: Associação Plantas do Nordeste, Instituto de Conservação Ambiental The Nature Conservancy do Brasil 76

[78]

Vleminckx J, Drouet T, Amani C, Lisingo J, Lejoly J, Hardy OJ. Impact of fine-scale edaphic heterogeneity on tree species assembly in a central African rainforest. J Veg Sci, 2015, 26(1): 134-144.

[79]

Wang X, Chu X, Liu T, Cheng X, Whittecar R. Water–soil–vegetation dynamic interactions in changing climate. Water, 2017 9 10 740

[80]

Xu X, Medvigy D, Powers JS, Becknell JM, Guan K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol, 2016, 212: 80-95.

[81]

Zeppel MJB, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A, West AG, McDowell NG. Drought and resprouting plants. New Phytol, 2015, 206(2): 583-589.

[82]

Zeppel MJB, Harrison SP, Adams HD, Kelley DI, Li G, Tissue DT, Dawson TE, Fensham R, Medlyn BE, Palmer A Drought and resprouting plants. New Phytol, 2015, 206(2): 583-589.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/