Carbon accumulations by stock change approach in tropical highland forests of Chiapas, Mexico

Deb R. Aryal , Roldan Ruiz-Corzo

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2479 -2493.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2479 -2493. DOI: 10.1007/s11676-019-01012-w
Original Paper

Carbon accumulations by stock change approach in tropical highland forests of Chiapas, Mexico

Author information +
History +
PDF

Abstract

Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration. Human activities such as livestock grazing, forest fires, selective logging and firewood extraction are the common disturbances that affect the carbon dynamics of the forest ecosystems. Here, we hypothesized that such anthropogenic activities significantly reduce the carbon stocks and accumulation rates in the tropical highland forests of the Sierra Madre de Chiapas in Southern Mexico. We sampled the Pinus oocarpa Scheide dominated forests within the elevation range of 900 to 1100 m above sea level in 2010, 2014 and 2017. We measured the stand structural properties and used the reported allometric equations to calculate the tree carbon stocks. Stock change approach was used to calculate carbon accumulation rates. The results showed a gradual increase in carbon storage over the 7-year period from 2010 to 2017, but the rate of increase varied significantly between the study sites. The aboveground carbon stock was 107.25 ± 11.77 Mg ha−1 for the site with lower anthropogenic intensity, compared to 74.29 ± 16.85 Mg ha−1 for the site with higher intensity. The current annual increment for the forest with lower anthropogenic intensity was 7.81 ± 0.65 Mg ha−1 a−1, compared to 3.87 ± 1.03 Mg ha−1 a−1 in the site with high anthropogenic intensity. Although at varying rates, these forests are functioning as important carbon sinks. The results on carbon accumulation rates have important implications in greenhouse gas mitigations and forest change modelling in the context of changing global climate.

Cite this article

Download citation ▾
Deb R. Aryal, Roldan Ruiz-Corzo. Carbon accumulations by stock change approach in tropical highland forests of Chiapas, Mexico. Journal of Forestry Research, 2019, 31(6): 2479-2493 DOI:10.1007/s11676-019-01012-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acosta-Mireles M, Carrillo-Anzures F, Díaz Lavariega M. Determinación del carbono total en bosques mixtos de Pinus patula Schl. et cham. Terra Latinoam, 2009, 27: 105-114.

[2]

Aguirre-Calderón OA, Jiménez-Pérez J. Evaluación del contenido de carbono en bosques del sur de Nuevo León. Rev Mex Cienc For, 2011, 2: 73-84.

[3]

Alberto D, Elvir J. Carbon accumulation and fixation in aerial biomass of Pinus oocarpa in natural forests in Honduras. For Syst, 2008, 17: 67-78.

[4]

Álvarez S, Rubio A. Línea base de carbono en bosque mixto de pino-encino de la Sierra Juárez (Oaxaca, México): aplicación del modelo CO2FIX v. 3.2. Rev Chapingo Ser Cienc For Ambiente, 2013, 19: 125-137.

[5]

Aryal DR, De Jong BH, Ochoa-Gaona S Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ, 2014, 195: 220-230.

[6]

Aryal DR, De Jong BH, Ochoa-Gaona S Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosys, 2015, 103: 45-60.

[7]

Aryal DR, Castro HG, García NDC Potencial de almacenamiento de carbono en áreas forestales en un sistema ganadero. Rev Mex Cienc For, 2018, 9: 150-180.

[8]

Aryal DR, Gómez-González RR, Hernández-Nuriasmú R, Morales-Ruiz DE. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor Syst, 2019, 93: 213-227.

[9]

Balvanera P, Kremen C, Martínez-Ramos M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol Appl, 2005, 15: 360-375.

[10]

Berenguer E, Ferreira J, Gardner TA A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob Change Biol, 2014, 20: 3713-3726.

[11]

Birdsey R, Pan Y. Trends in management of the world’s forests and impacts on carbon stocks. For Ecol Manag, 2015, 355: 83-90.

[12]

Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320: 1444-1449.

[13]

Bustamante M, Roitman I, Aide TM Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob Change Biol, 2016, 22: 92-109.

[14]

Cairns MA, Brown S, Helmer EH, Baumgardner GA. Root biomass allocation in the world’s upland forests. Oecologia, 1997, 111: 1-11.

[15]

Cairns MA, Haggerty PK, Alvarez R Tropical Mexico's recent land-use change: a regions's contribution to the global carbon cycle. Ecol Appl, 2000, 10: 1426-1441.

[16]

Cairns MA, Olmsted I, Granados J, Argaez J. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag, 2003, 186: 125-132.

[17]

Campos EMZ, Cuecuecha OGV, Ahuatzi AP Variación natural de la densidad de la madera en Pinus montezumae Lamb. en tres altitudes del parque nacional la Malinche, Tlaxcala, México. For Veracruzana, 2007, 9: 33-37.

[18]

Canadell JG, Raupach MR. Managing forests for climate change mitigation. Science, 2008, 320: 1456.

[19]

Cayuela L, Golicher DJ, Benayas J Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol, 2006, 43: 1172-1181.

[20]

Chaplin-Kramer R, Ramler I, Sharp R Degradation in carbon stocks near tropical forest edges. Nat Commun, 2015, 6: 10158.

[21]

Chave J, Condit R, Lao S Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol, 2003, 91: 240-252.

[22]

Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst, 2003, 6: 51-71.

[23]

Chazdon RL, Letcher SG, Van Breugel M Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos Trans R Soc B, 2007, 362: 273-289.

[24]

Chen L-C, Liang M-J, Wang S-L. Carbon stock density in planted versus natural Pinus massoniana forests in sub-tropical China. Ann For Sci, 2016, 73: 461-472.

[25]

Ciais P, Sabine C, Bala G Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 2013, Cambridge: Cambridge University Press.

[26]

Cohen WB, Yang Z, Stehman SV Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. For Ecol Manag, 2016, 360: 242-252.

[27]

Collas L, Green RE, Ross A Urban development, land sharing and land sparing: the importance of considering restoration. J Appl Ecol, 2017, 54: 1865-1873.

[28]

Cortina-Villar S, Plascencia-Vargas H, Vaca R Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environ Manag, 2012, 49: 649-662.

[29]

De Jong BHJ. Spatial distribution of biomass and links to reported disturbances in tropical lowland forests of southern Mexico. Carbon Manag, 2013, 4: 601-615.

[30]

De Jong BH, Cairns MA, Haggerty PK Land-use change and carbon flux between 1970s and 1990s in central highlands of Chiapas, Mexico. Environ Manage, 1999, 23: 373-385.

[31]

De Jong B, Anaya C, Masera O Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For Ecol Manag, 2010, 260: 1689-1701.

[32]

De Vos B, Lettens S, Muys B, Deckers JA. Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manag, 2007, 23: 221-229.

[33]

Edwards DP, Tobias JA, Sheil D Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol, 2014, 29: 511-520.

[34]

Enquist BJ, West GB, Charnov EL, Brown JH. Allometric scaling of production and life-history variation in vascular plants. Nature, 1999, 401: 907-911.

[35]

Enquist BJ, Kerkhoff AJ, Huxman TE, Economo EP. Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. Glob Change Biol, 2007, 13: 591-609.

[36]

Erb KH, Kastner T, Luyssaert S Bias in the attribution of forest carbon sinks. Nat Clim Change, 2013, 3: 854.

[37]

Fehse J, Hofstede R, Aguirre N High altitude tropical secondary forests: a competitive carbon sink?. For Ecol Manag, 2002, 163: 9-25.

[38]

Flamenco-Sandoval A, Ramos MM, Masera OR. Assessing implications of land-use and land-cover change dynamics for conservation of a highly diverse tropical rain forest. Biol Conserv, 2007, 138: 131-145.

[39]

Fonseca W, Benayas JMR, Alice FE. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag, 2011, 262: 1400-1408.

[40]

Galindo-Jaimes L, González-Espinosa M, Quintana-Ascencio P, García-Barrios L. Tree composition and structure in disturbed stands with varying dominance by Pinus spp. in the highlands of Chiapas, México. Plant Ecol, 2002, 162: 259-272.

[41]

García-Barrios L, Galván-Miyoshi YM, Valsieso-Pérez IA Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience, 2009, 59: 863-873.

[42]

Gibbs HK, Brown S, Niles JO, Foley JA. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett, 2007, 2: 045023.

[43]

González Espinosa M, Ramírez Marcial N, Camacho Cruz A Restauración de bosques en territorios indígenas de Chiapas: modelos ecológicos y estrategias de acción. Bol Soc Botánica México, 2007, 80: 11-23.

[44]

Guan J, Zhou H, Deng L Forest biomass carbon storage from multiple inventories over the past 30 years in Gansu Province, China: implications from the age structure of major forest types. J For Res, 2015, 26: 887-896.

[45]

Gunn JS, Ducey MJ, Whitman AA. Late-successional and old-growth forest carbon temporal dynamics in the Northern Forest (Northeastern USA). For Ecol Manag, 2014, 312: 40-46.

[46]

Gutiérrez Vázquez BN, Gómez Cárdenas M, Valencia Manzo S Variación de la densidad de la madera en poblaciones naturales de Pinus oocarpa Schiede ex Schltdl. del estado de Chiapas, México. Rev Fitotec Mex, 2010, 33: 75-78.

[47]

Henry M, Cifuentes Jara M, Réjou-Méchain M Recommendations for the use of tree models to estimate national forest biomass and assess their uncertainty. Ann For Sci, 2015, 72: 769-777.

[48]

Hernández-Stefanoni JL, Dupuy JM, Johnson KD Improving species diversity and biomass estimates of tropical dry forests using airborne LiDAR. Remote Sens, 2014, 6: 4741-4763.

[49]

Houghton R. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Clim Syst, 2012, 4: 597-603.

[50]

Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology, 1999, 80: 1892-1907.

[51]

INEGI (2013) Uso de suelo y vegetación: Serie V. In: Inst. Nac. Estad. Geogr. INGI Mex. https://www.inegi.org.mx/geo/contenidos/recnat/usosuelo/. Accessed 21 Mar 2018

[52]

Kauffman JB, Steele MD, Cummings DL, Jaramillo VJ. Biomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest. For Ecol Manag, 2003, 176: 1-12.

[53]

Köhl M, Lasco R, Cifuentes M Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Chang Glob For Resour, 2015, 2015(352): 21-34.

[54]

Kurz WA, Stinson G, Rampley GJ Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci, 2008, 105: 1551-1555.

[55]

Le Quéré C, Raupach MR, Canadell JG Trends in the sources and sinks of carbon dioxide. Nat Geosci, 2009, 2: 831-836.

[56]

Liu YY, Van Dijk AI, De Jeu RA Recent reversal in loss of global terrestrial biomass. Nat Clim Change, 2015, 5: 470-474.

[57]

Luyssaert S, Schulze E-D, Börner A Old-growth forests as global carbon sinks. Nature, 2008, 455: 213-215.

[58]

Martínez-Meléndez J, Pérez-Farrera , Farrera-Sarmiento O. Inventario florístico del cerro el Cebú y zonas adyacentes en la Reserva de la Biosfera El Triunfo (polígono V), Chiapas, México. Bol Soc Botánica México, 2008, 82: 21-40.

[59]

Martínez-Sánchez JL, Tigar BJ, Cámara L, Castillo O. Relationship between structural diversity and carbon stocks in humid and sub-humid tropical forest of Mexico. Ecoscience, 2015, 22: 125-131.

[60]

Mora F, Jaramillo VJ, Bhaskar R Carbon accumulation in neotropical dry secondary forests: the roles of forest age and tree dominance and diversity. Ecosystems, 2017

[61]

Myneni RB, Dong J, Tucker CJ A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci, 2001, 98: 14784-14789.

[62]

Nabuurs G-J, Lindner M, Verkerk PJ First signs of carbon sink saturation in European forest biomass. Nat Clim Change, 2013, 3: 792-796.

[63]

Ordóñez JAB, de Jong BH, García-Oliva F Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For Ecol Manag, 2008, 255: 2074-2084.

[64]

Ordóñez Díaz JAB, Galicia Naranjo A, Venegas Mancera NJ Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera Bosques, 2015, 21: 77-216.

[65]

Orihuela-Belmonte DE, De Jong BHJ, Mendoza-Vega J Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric Ecosyst Environ, 2013, 171: 72-84.

[66]

Pan Y, Birdsey RA, Fang J A large and persistent carbon sink in the world’s forests. Science, 2011, 333: 988-993.

[67]

Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 2011, 333: 1289-1291.

[68]

Phalan B, Green RE, Dicks LV How can higher-yield farming help to spare nature?. Science, 2016, 351: 450-451.

[69]

Pimienta de la Torre DJ, Domínguez Cabrera G, Aguirre Caldreón Ó Estimación de biomasa y contenido de carbono de Pinus cooperi Blanco, en Pueblo Nuevo, Durango. Madera Bosques, 2007, 13: 35-46.

[70]

Ponce-Reyes R, Reynoso-Rosales V-H, Watson JE Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change, 2012, 2: 448-452.

[71]

Poorter L, Bongers F, Aide TM Biomass resilience of Neotropical secondary forests. Nature, 2016, 530: 211-214.

[72]

Ramírez-Marcial N. Survival and growth of tree seedlings in anthropogenically disturbed Mexican montane rain forests. J Veg Sci, 2003, 14: 881-890.

[73]

Raymond CL, Healey S, Peduzzi A, Patterson P. Representative regional models of post-disturbance forest carbon accumulation: integrating inventory data and a growth and yield model. For Ecol Manag, 2015, 336: 21-34.

[74]

Reich PB. Biogeochemistry: taking stock of forest carbon. Nat Clim Change, 2011, 1: 346-347.

[75]

Reyes G, Brown S, Chapman J, Lugo AE (1992) Wood densities of tropical tree species. Gen Tech Rep -88, U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, p 15

[76]

Rodríguez-Laguna R, Jiménez-Pérez J, Aguirre-Calderón OA Estimación de carbono almacenado en el bosque de pino-encino en la Reserva de la Biósfera el Cielo, Tamaulipas, México. Ra Ximhai Rev Soc Cult Desarro Sustentable, 2009, 5: 317-327.

[77]

Rodríguez-Larramendi LA, Guevara-Hernández F, Reyes-Muro L Estimación de biomasa y carbono almacenado en bosques comunitarios de la región Frailesca de Chiapas, México. Rev Mex Cienc For, 2016, 7: 77-94.

[78]

Rojas-García F, De Jong BH, Martínez-Zurimendí P, Paz-Pellat F. Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Ann For Sci, 2015, 72: 835-864.

[79]

Schroth G, Laderach P, Dempewolf J Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig Adapt Strateg Glob Change, 2009, 14: 605-625.

[80]

Silver W, Ostertag R, Lugo A. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol, 2000, 8: 394-407.

[81]

Sitch S, Friedlingstein P, Gruber N Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12: 653-679.

[82]

Stephenson NL, Das A, Condit R Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507: 90-93.

[83]

Throop H, Archer S, Monger HC, Waltman S. When bulk density methods matter: implications for estimating soil organic carbon pools in rocky soils. J Arid Environ, 2012, 77: 66-71.

[84]

Toledo-Aceves T, Meave JA, González-Espinosa M, Ramírez-Marcial N. Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J Environ Manag, 2011, 92: 974-981.

[85]

Urquiza-Haas T, Dolman PM, Peres CA. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. For Ecol Manag, 2007, 247: 80-90.

[86]

Van Wagner C. Practical aspects of the line intersect method, 1982, Chalk River: Canadian Forest Service, Petawawa National Forestry Institute.

[87]

Vargas R, Allen MF, Allen EB. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Change Biol, 2008, 14: 109-124.

[88]

Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ Allometric equations for estimation of biomass and carbon stocks in temperate forests of north-Western Mexico. Forests, 2017, 8: 269-289.

[89]

Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 1934, 37: 29-38.

[90]

Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. Data from: towards a worldwide wood economics spectrum. Dryad digital repository, 2009, Durham: Dryad

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/