Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region

Peixian Li , Wenquan Zhu , Zhiying Xie , Kun Qiao

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2255 -2272.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2255 -2272. DOI: 10.1007/s11676-019-01009-5
Original Paper

Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region

Author information +
History +
PDF

Abstract

Taxus wallichiana Zucc. (Himalayan yew) is subject to international and national conservation measures because of its over-exploitation and decline over the last 30 years. Predicting the impact of climate change on T. wallichiana’s distribution might help protect the wild populations and plan effective ex situ measures or cultivate successfully. Considering the complexity of climates and the uncertainty inherent in climate modeling for mountainous regions, we integrated three Representative Concentration Pathways (RCPs) (i.e., RCP2.6, RCP4.5, RCP8.5) based on datasets from 14 Global Climate Models of Coupled Model Intercomparison Project, Phase 5 to: (1) predict the potential distribution of T. wallichiana under recent past (1960–1990, hereafter “current”) and future (2050s and 2070s) scenarios with the species distribution model MaxEnt.; and (2) quantify the climatic factors influencing the distribution. In respond to the future warming climate scenarios, (1) highly suitable areas for T. wallichiana would decrease by 31–55% at a rate of 3–7%/10a; (2) moderately suitable areas would decrease by 20–30% at a rate of 2–4%/10a; (3) the average elevation of potential suitable sites for T. wallichiana would shift up-slope by 390 m (15%) to 948 m (36%) at a rate of 42–100 m/10a. Average annual temperature (contribution rate ca. 61%), isothermality and temperature seasonality (20%), and annual precipitation (17%) were the main climatic variables affecting T. wallichiana habitats. Prior protected areas and suitable planting areas must be delimited from the future potential distributions, especially the intersection areas at different suitability levels. It is helpful to promote the sustainable utilization of this precious resource by prohibiting exploitation and ex situ restoring wild resources, as well as artificially planting considering climate suitability.

Keywords

Taxus wallichiana Zucc. / Climate warming / Potential distribution / MaxEnt / Conservation and cultivation

Cite this article

Download citation ▾
Peixian Li, Wenquan Zhu, Zhiying Xie, Kun Qiao. Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region. Journal of Forestry Research, 2019, 31(6): 2255-2272 DOI:10.1007/s11676-019-01009-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander JM, Chalmandrier L, Lenoir J, Burgess TI, Essl F, Haide S, Kueffer C, McDougall K, Milbau A, Nuñez MA, Pauchard A, Rabitsch W, Rew LJ, Sanders NJ, Pellissier L. Lags in the response of mountain plant communities to climate change. Glob Change Biol, 2018, 24: 563-579.

[2]

An Z, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 2001, 411: 62-66.

[3]

Araújo MB, New M. Ensemble forecasting of species distributions. Trends Ecol Evol, 2007, 22: 42-47.

[4]

Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE. Progressive forest canopy water loss during the 2012–2015 California drought. Proc Natl Acad Sci USA, 2016, 113: E249-E255.

[5]

Bagchi R, Crosby M, Huntley B, Hole DG, Butchart SHM, Collingham Y, Kalra M, Rajkumar J, Rahmani A, Pandey M, Gurung H, Trai LT, Quang NV, Willis SG. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Glob Change Biol, 2013, 19: 1236-1248.

[6]

Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC. Changes in plant community composition lag behind climate warming in lowland forests. Nature, 2011, 479: 517-520.

[7]

Bocksberger G, Schnitzler J, Chatelain C, Daget P, Janssen T, Schmidt M, Thiombiano A, Zizka G. Climate and the distribution of grasses in West Africa. J Veg Sci, 2016, 27: 306-317.

[8]

Booth TH. Species distribution modelling tools and databases to assist managing forests under climate change. For Ecol Manag, 2018, 430: 196-203.

[9]

Bosso L, Luchi N, Maresi G, Cristinzio G, Smeraldo S, Russo D. Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. For Ecol Manag, 2017, 400: 655-664.

[10]

Broadhurst LM, Mellick R, Knerr N, Li L, Supple MA. Land availability may be more important than genetic diversity in the range shift response of a widely distributed eucalypt, Eucalyptus melliodora. For Ecol Manag, 2018, 409: 38-46.

[11]

Brown JL, Bennett JR, French CM. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 2017, 5: e4095.

[12]

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333: 1024-1026.

[13]

CITES (2007) Checklist of CITES species. Retrieved from http://checklist.cites.org/#/en/search/output_layout=alphabetical&level_of_listing=0&show_synonyms=1&show_author=1&show_english=1&show_spanish=1&show_french=1&scientific_name=Taxus&page=1&per_page=20

[14]

Costion CM, Simpson L, Pert PL, Carlsen MM, Kress WJ, Crayn D. Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biol Conserv, 2015, 191: 322-330.

[15]

Cuyckens GAE, Christie D, Domic A, Malizia LR, Renison D. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Glob Planet Change, 2016, 137: 79-87.

[16]

Davis MB, Shaw RG. Range shifts and adaptive responses to Quaternary climate change. Science, 2001, 292: 673-679.

[17]

Du H, Liu J, Li MH, Büntgen U, Yang Y, Wang L, Wu Z, He HS. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Glob Change Biol, 2018, 24: 1256-1266.

[18]

Duque-Lazo J, Navarro-Cerrillo RM, Ruíz-Gómez FJ. Assessment of the future stability of cork oak (Quercus suber L.) afforestation under climate change scenarios in Southwest Spain. For Ecol Manag, 2018, 409: 444-456.

[19]

Dyderski MK, Paź S, Frelich LE, Jagodziński AM. How much does climate change threaten European forest tree species distributions?. Glob Change Biol, 2018, 24: 1150-1163.

[20]

Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129-151.

[21]

Gajurel JP, Werth S, Shrestha KK, Scheidegger C. Species distribution modeling of Taxus wallichiana (Himalayan Yew) in Nepal Himalaya. Asian J Conserv Biol, 2014, 3: 127-134.

[22]

Garcia RA, Cabeza M, Rahbek C, Araújo MB. Multiple dimensions of climate change and their implications for biodiversity. Science, 2014, 344: 1247579.

[23]

Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Model, 2000, 135: 147-186.

[24]

Guo YL, Li X, Zhao ZF, Wei HY. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China. Sci China Earth Sci, 2018, 61: 1669-1684.

[25]

Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 2006, 29: 773-785.

[26]

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25: 1965-1978.

[27]

Huang JH, Li GQ, Li J, Zhang XQ, Yan MJ, Du S. Projecting the range shifts in climatically suitable habitat for Chinese sea buckthorn under climate change scenarios. Forests, 2018, 9: 1-11.

[28]

Hughes L. Biological consequences of global warming: is the signal already apparent?. Trends Ecol Evol, 2000, 15: 56-61.

[29]

Hutchinson MF (2004) Anusplin version 4.3. Centre for Resource and Environmental Studies. The Australian National University, Canberra

[30]

Ikegami M, Jenkins TA. Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model-Pine Wilt disease as a model case. For Ecol Manag, 2018, 409: 343-352.

[31]

IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

[32]

IUCN (2018) The IUCN red list of threatened species. Version 2018–1. Retrieved from http://www.iucnredlist.org

[33]

Jackson ST, Overpeck JT. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 2000, 26: 194-220.

[34]

Jackson ST, Betancourt JL, Booth RK, Gray ST. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc Natl Acad Sci USA, 2009, 106: 19685-19692.

[35]

Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennage T, Turne MG. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ, 2016, 14: 369-378.

[36]

Kohler T, Giger M, Hurni H, Ott C, Wiesmann U, von Dach SW, Maselli D. Mountains and climate change: a global concern. Mt Res Dev, 2010, 30: 53-55.

[37]

Lenoir J, Gégout JC, Marquet P, De Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science, 2008, 320: 1768-1771.

[38]

Lenoir J, Gégout JC, Pierrat JC, Bontemps JD, Dhôte JF. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography, 2009, 32: 765-777.

[39]

Liang EY, Wang YF, Piao SL, Lu XM, Camarero JJ, Zhu HF, Zhu LP, Ellison AM, Ciais P, Peñuelas J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci USA, 2016, 113: 4380-4385.

[40]

Liang Y, Duveneck MJ, Gustafson EJ, Serra-Diaz JM, Thompson JR. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Glob Chang Biol, 2018, 24: e335-e351.

[41]

Liu J, Provan J, Gao LM, Li DZ. Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in Taxus. Int J Mol Sci, 2012, 13: 8740-8751.

[42]

Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol, 2013, 199: 1093-1108.

[43]

Liu J, Milne RI, Möller M, Zhu GF, Ye LJ, Luo YH, Yang JB, Wambulwa MC, Wang CN, Li DZ, Gao LM. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Mol Ecol Resour, 2018, 0: 1-17.

[44]

Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O. Simulation and prediction of the Southern Annular Mode and its influence on Australian intra-seasonal climate in POAMA. Clim Dyn, 2012, 38: 2483-2502.

[45]

Merow C, Smith MJ, Silander JA Jr. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36: 1058-1069.

[46]

Miao YC, Su JR, Zhang ZJ, Lang XD, Liu WD, Li SF. Microsatellite markers indicate genetic differences between cultivated and natural populations of endangered Taxus yunnanensis. Bot J Linn Soc, 2015, 177: 450-461.

[47]

Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science, 2015, 349: 823-826.

[48]

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858.

[49]

Nolan C, Overpeck JT, Allen JR, Anderson PM, Betancourt JL, Binney HA, Brewer S, Bush MB, Chase BM, Cheddadi R, Djamali M, Dodson J, Edwards ME, Gosling WD, Haberle S, Hotchkiss SC, Huntley B, Ivory SJ, Kershaw AP, Kim SH, Latorre C, Leydet M, Lézine AM, Liu KB, Liu Y, Lian-Ming LA, Gao V, McGlone MS, Marchant RA, Momohara A, Moreno PI, Müller S, Otto-Bliesner BL, Shen C, Stevenson J, Takahara H, Tarasov PE, Tipton J, Vincens A, Weng C, Xu Q, Zheng Z, Jackson ST. Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361: 920-923.

[50]

Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akcakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C. Assessing species vulnerability to climate change. Nat Clim Change, 2015, 5: 215-224.

[51]

Parmesan C, Hanley ME. Plants and climate change: complexities and surprises. Ann Bot, 2015, 116: 849-864.

[52]

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421: 37-42.

[53]

Paul A, Bharali S, Khan ML, Tripathi OP. Anthropogenic disturbances led to risk of extinction of Taxus wallichiana Zuccarini, an endangered medicinal tree in Arunachal Himalaya. Nat Area J, 2013, 33: 447-454.

[54]

Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob Ecol Biogeogr, 2003, 12: 361-371.

[55]

Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JP, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M. Scenarios for global biodiversity in the 21st century. Science, 2010, 330: 1496-1501.

[56]

Phillips SJ. A brief tutorial on Maxent, 2005, Middletown: AT&T Research.

[57]

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model, 2006, 190: 231-259.

[58]

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open-source release of Maxent. Ecography, 2017, 40: 887-893.

[59]

Poudel RC, Möller M, Liu J, Gao LM, Baral SR, Li DZ. Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: implications for conservation of their highly fragmented populations. Divers Distrib, 2014, 20: 1270-1284.

[60]

Pyke CR, Andelman SJ, Midgley G. Identifying priority areas for bioclimatic representation under climate change: a case study for Proteaceae in the Cape Floristic Region, South Africa. Biol Conserv, 2005, 125: 1-9.

[61]

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature, 2003, 421: 57-60.

[62]

Sajwan BS, Prakash KC. Conservation of medicinal plants: conventional and contemporary strategies, regulations and executions. Indian For, 2007, 133: 484-495.

[63]

Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary R, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn, 2015, 5: 1407-1461.

[64]

Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277: 665-667.

[65]

Shen W, Zhang L, Guo Y, Luo TX. Causes for treeline stability under climate warming: evidence from seed and seedling transplant experiments in southeast Tibet. For Ecol Manag, 2018, 408: 45-53.

[66]

State Forestry Administration of China (1999) A list of national key protected wild plants in China (first batch). http://www.gov.cn/gongbao/content/2000/content_60072.htm

[67]

Su JR, Zhang ZJ, Deng J, Li GS. Relationships between geographical distribution of Taxus wallichiana and climate in China. For Res, 2005, 18: 510-515. (in Chinese)

[68]

Theurillat JP, Guisan A. Potential impact of climate change on vegetation in the European Alps: a review. Clim Change, 2001, 50: 77-109.

[69]

Thomas P, Farjon A (2011) Taxus wallichiana. The IUCN red list of threatened species 2011:e.T46171879A9730085.http://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS.T46171879A9730085.en

[70]

Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol, 2005, 11: 2234-2250.

[71]

TRAFFIC East Asia Report (2007) Trade and conservation of Taxus in China. https://www.traffic.org/site/assets/files/5211/conservation-taxus-in-china.pdf

[72]

Uniyal SK. Bark removal and population structure of Taxus wallichiana Zucc. in a temperate mixed conifer forest of western Himalaya. Environ Monit Assess, 2013, 185: 2921-2928.

[73]

Wallace JM, Thompson DW, Fang Z. Comments on “Northern Hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation”. J Clim, 2000, 13: 1037-1039.

[74]

Wang L (2018) Endangered yew in the past 20 years, ThePaper.cn. Retrieved from https://www.thepaper.cn/newsDetail_forward_2248908 (in Chinese)

[75]

Wang WJ, He HS, Thompson FR, Spetich MA, Fraser JS. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change. Sci Total Environ, 2018, 634: 1214-1221.

[76]

Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc, 1971, 93: 2325-2327.

[77]

Wenger SJ, Som NA, Dauwalter DC, Isaak DJ, Neville HM, Luce CH, Dunham JB, Young MK, Fausch KD, Rieman BE. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Glob Change Biol, 2013, 19: 3343-3354.

[78]

Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers Distrib, 2008, 14: 763-773.

[79]

Yan CY, Yin Y, Zhang DW, Yang W, Yu RM. Structural characterization and in vitro antitumor activity of a novel polysaccharide from Taxus yunnanensis. Carbohydr Polym, 2013, 96: 389-395.

[80]

Yang XQ, Kushwaha S, Saran S, Xu J, Roy P. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng, 2013, 51: 83-87.

[81]

Yang L, Ruan X, Gao XX, Zhang H, Wang Q. Morphological characteristics, geographical distribution, secondary metabolites, and biological activities of Taxus. Mini Rev Org Chem, 2017, 14: 217-226.

[82]

Yao TD, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, Yang XX, Duan KQ, Zhao HB, Xu BQ, Pu JC, Lu AX, Xiang Y, Kattel DB, Joswiak D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change, 2012, 2: 663-667.

[83]

Zhang KL, Yao LJ, Meng JS, Tao J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Environ, 2018, 634: 1326-1334.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/