Molecular cloning, characterization, and antioxidant function of catalase in Lymantria dispar asiatic (Lepidoptera: Lymantriidae) under avermectin stress

Jianyong Zeng , Bowen Zhang , Thi Minh Dien Vuong , Tingting Zhang , Jing Yang , Guocai Zhang

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2563 -2570.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (6) : 2563 -2570. DOI: 10.1007/s11676-019-01008-6
Original Paper

Molecular cloning, characterization, and antioxidant function of catalase in Lymantria dispar asiatic (Lepidoptera: Lymantriidae) under avermectin stress

Author information +
History +
PDF

Abstract

The critical antioxidant catalase (CAT) breaks down hydrogen peroxide induced by environmental stresses. Here we cloned full length catalase cDNA from Lymantria dispar asiatic (LdCAT). Bioinformatic analyses showed that open reading frames of LdCAT contains 1524 bp, encoding 507 amino acids with molecular weight of 126.99 kDa, theoretical pI of 5.00, aliphatic index of 29.92, grand average of hydropathicity of 0.764, and instability index (II) of 46.56. Protein BLAST and multiple sequence alignment indicated that LdCAT had high identity with CAT from other insects, especially lepidopterans. In a phylogenetic analysis, LdCAT was most similar to CAT from Spodoptera litura and S. exigua. Quantitative real-time polymerase chain reaction showed that LdCAT transcripts in all instar larvae and the five tissues tested, verifying the ubiquity of LdCAT in L. disapr. Moreover, LdCAT of third instar larvae was significantly upregulated after they fed on avermectin at sublethal and LC10 doses. The highest relative transcript levels were found 2 h after an avermectin spray at LC90, and in the cuticula, rather than heads, fat bodies, malpighian tubes, and midguts after a spray avermectin at a sublethal concentration. The expression level of LdCAT under pesticide stresses here suggested that CAT is an important antioxidant enzyme of L. disapr defensing against pesticide stress and may be a good target for controlling this pest.

Keywords

Lymantria dispar asiatic / Gypsy moth / Catalase / Molecular cloning / Relative expression level / Pesticide stress / Instar

Cite this article

Download citation ▾
Jianyong Zeng, Bowen Zhang, Thi Minh Dien Vuong, Tingting Zhang, Jing Yang, Guocai Zhang. Molecular cloning, characterization, and antioxidant function of catalase in Lymantria dispar asiatic (Lepidoptera: Lymantriidae) under avermectin stress. Journal of Forestry Research, 2019, 31(6): 2563-2570 DOI:10.1007/s11676-019-01008-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartos M, Falkinham OJIII, Pavlik I. Mycobacterial catalases, peroxidases, and superoxide dismutases and their effects on virulence and isoniazid-susceptibility in mycobacteria–a review. Veterinární Medicína, 2012, 49: 161-170.

[2]

Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci, 2004, 61: 192-208.

[3]

Chen L, Diao J, Zhang W, Zhang L, Wang Z, Li Y, Deng Y, Zhou Z. Effects of beta-cypermethrin and myclobutanil on some enzymes and changes of biomarkers between internal tissues and saliva in reptiles (Eremias argus). Chemosphere, 2019, 216: 69-74.

[4]

El-Gendy K, Radwan M, Gad A, Khamis A, Eshra E. Use of multiple endpoints to investigate the ecotoxicological effects of abamectin and thiamethoxam on Theba pisana snails. Ecotox Environ Safe, 2019, 167: 242-249.

[5]

Fang S, Zhang Y, You X, Sun P, Qiu J, Kong F. Lethal toxicity and sublethal metabolic interference effects of sulfoxaflor on the earthworm (Eisenia fetida). J Agr Food Chem, 2018, 66: 11902-11908.

[6]

Fateh R, Zaini F, Kordbacheh P, Falahati M, Rezaie S, Daie Ghazvini R, Borhani N, Safara M, Fattahi A, Kanani A, Farahyar S, Bolhassani M, Heidari M. Identification and sequencing of Candida krusei aconitate hydratase gene using rapid amplification of cDNA ends method and phylogenetic analysis. Jundishapur J Microb, 2015, 8: 1-11.

[7]

Felton GW, Summers CB. Antioxidant systems in insects. Arch Insect Biochem, 1995, 29: 187-197.

[8]

Foyer CH, Noctor G. Stress-triggered redox signalling: what’s in pROSpect?. Plant, Cell Environ, 2016, 39: 951-964.

[9]

Foyer CH, Ruban AV, Noctor G. Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J, 2017, 474: 877-883.

[10]

Fridovich I. The biology of oxygen radicals. Science, 1978, 201: 875-880.

[11]

Gaetani G, Ferraris A, Rolfo M, Mangerini R, Arena J, Kirkman H. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood, 1994, 84: 1595-1599.

[12]

Iummato MM, Sabatini SE, Cacciatore LC, Cochón AC, Cataldo D, Mdcr DM, Juárez ÁB. Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Ecotox Environ Safe, 2018, 163: 69-75.

[13]

Jena K, Kar PK, Kausar Z, Babu CS. Effects of temperature on modulation of oxidative stress and antioxidant defenses in testes of tropical tasar silkworm Antheraea mylitta. J Therm Biol, 2013, 38: 199-204.

[14]

Kang Z, Liu F, Pang R, Tian H, Liu T. Effect of sublethal doses of imidacloprid on the biological performance of aphid endoparasitoid Aphidius gifuensis (Hymenoptera: Aphidiidae) and influence on its related gene expression. Front Physiol, 2018, 9: 1-15.

[15]

Li G, Fan A, Peng G, Keyhani NO, Xin J, Cao Y, Xia Y. A bifunctional catalase-peroxidase, MakatG1, contributes to virulence of Metarhizium acridum by overcoming oxidative stress on the host insect cuticle. Environ Microbiol, 2017, 19: 4365-4378.

[16]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, California), 2001, 25: 402-408.

[17]

Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull, 2001, 42: 656-666.

[18]

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res, 2017, 45: 200-203.

[19]

Martindale JL, Holbrook NJ. Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol, 2002, 192: 1-15.

[20]

Mcgillivray P, Ault R, Pawashe M, Kitchen R, Balasubramanian S, Gerstein M. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res, 2018, 46: 3326-3338.

[21]

Mermans C, Dermauw W, Geibel S, Van LT. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. Pest Manag Sci, 2017, 73: 2413-2418.

[22]

Merzendorfer H. Insect chitin synthases: a review. J Comp Physiol B, 2006, 176: 1-15.

[23]

Qin J, Lu M, Zheng Y, Du Y. Molecular cloning, characterization, and functional analysis of catalase in Frankliniella occidentalis (Thysanoptera: Thripidae). Ann Entomol Soc Am, 2016, 110: 212-220.

[24]

Rudneva II. Antioxidant system of black sea animals in early development. Comp Biochem Physiol C, 1999, 122: 265-271.

[25]

Santamaría ME, Arnaiz A, Velasco-Arroyo B, Grbic V, Diaz I, Martinez M. Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Sci Rep-Uk, 2018, 8: 1-13.

[26]

Shen Y, Li D, Tian P, Shen K, Zhu J, Feng M, Wan C, Yang T, Chen L, Wen F. The catalase C-262T gene polymorphism and cancer risk: a systematic review and meta-analysis. Medicine, 2015, 94: 1-8.

[27]

Siddique S, Syed Q, Saleem Y, Adnan A, Qureshi FA. Toxicity of avermectin B1b to earthworm and cockroaches. J Anim Plant Sci, 2015, 25: 844-850.

[28]

Song Y, Chen M, Zhou J. Effects of three pesticides on superoxide dismutase and glutathione-S-transferase activities and reproduction of Daphnia magna. Arch Environ Prot, 2017, 43: 80-86.

[29]

Sun X, Song Q. PKC-mediated USP phosphorylation is required for 20E-induced gene expression in the salivary glands of Drosophila melanogaster. Arch Insect Biochem Physiol, 2006, 62: 116-127.

[30]

Sun L, Wang Z, Zou C, Cao C. Transcription profiling of 12 Asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides. Arch Insect Biochem, 2014, 85: 181-194.

[31]

Tang Y, Wen M, Lian B, Cheng J, Wang K, Zhou B. Detection, cloning, and sequencing of the enterotoxin gene of Clostridium perfringens type C isolated from goat. Turk J Vet Anim, 2014, 36: 153-158.

[32]

Tian X, Yang W, Wang D, Zhao Y, Yao R, Ma L, Ge C, Li X, Huang Z, He L. Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram. Chemosphere, 2018, 210: 1006-1012.

[33]

Vieira HLA, Pereira ACP, Carrondo MJT, Alves PM. Catalase effect on cell death for the improvement of recombinant protein production in baculovirus-insect cell system. Bioproc Biosyst Eng, 2006, 29: 409-414.

[34]

Waltari E, Jia M, Jiang CS, Lu H, Huang J, Fernandez C, Finzi A, Kaufmann DE, Markowitz M, Tsuji M, Wu X. 5′ rapid amplification of cDNA ends and illumina MiSeq reveals B cell receptor features in healthy adults, adults with chronic HIV-1 infection, cord blood, and humanized mice. Front Immunol, 2018, 9: 1-22.

[35]

Wan NF, Li X, Guo L, Ji XY, Zhang H, Chen YJ, Jiang JX. Phytochemical variation mediates the susceptibility of insect herbivores to entomoviruses. J Appl Entomol, 2018, 142: 705-715.

[36]

Wann KT. The cellular actions of the avermectins. Phytother Res, 2010, 1: 143-150.

[37]

Wei P, Che W, Wang J, Xiao D, Wang R, Luo C. RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci. Pestic Biochem Physiol, 2018, 145: 1-7.

[38]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server. Method Mol Bio (Clifton, NJ), 1999, 112: 531.

[39]

Xu ZF, Shi L, Peng JF, Shen GM, Wei P, Wu Q, He L. Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Phys, 2016, 129: 75-82.

[40]

Xu J, Lu M, Huang D, Du Y. Molecular cloning, characterization, genomic structure and functional analysis of catalase in Chilo suppressalis. J Asia-Pac Entomol, 2017, 20: 331-336.

[41]

Zeng J, Zhang F, Wu Y, Zhang T, Zhang G (2018) Synergistic mechanism of combined using insecisides abamectin plus triflumuron for control larvae of Lymantria dispar (Lepidoptera: Lymantriidae). Sci Sil Sin 54: (accept, waiting for publication)

[42]

Zhang W, Chen W, Li Z, Ma L, Yu J, Wang H, Liu Z, Xu B. Identification and characterization of three new cytochrome P450 genes and the Use of RNA interference to evaluate their roles in antioxidant defense in Apis cerana cerana fabricius. Front Physiol, 2018, 9: 1-16.

[43]

Zhao H, Sun X, Xue M, Zhang X, Li Q. Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: catalase may play a dominant role. PLoS ONE, 2016, 11: 1-17.

[44]

Zhao Y, Sun Q, Hu K, Ruan J, Yang X. Isolation, characterization, and tissue-specific expression of GABA A receptor α1 subunit gene of Carassius auratus gibelio after avermectin treatment. Fish Physiol Biochem, 2016, 42: 1-10.

[45]

Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques, 2001, 30: 892-897.

[46]

Zou C, Lv C, Wang Y, Cao C, Zhang G. Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar. Pestic Biochem Physiol, 2017, 142: 123-132.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/