Comparative transcriptome analyses reveal candidate genes regulating wood quality in Japanese larch (Larix kaempferi)

Shae He , Yunhui Xie , Xiaomei Sun , Shougong Zhang

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (1) : 65 -73.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (1) : 65 -73. DOI: 10.1007/s11676-019-00997-8
Original Paper

Comparative transcriptome analyses reveal candidate genes regulating wood quality in Japanese larch (Larix kaempferi)

Author information +
History +
PDF

Abstract

We studied the molecular mechanism of the quality traits of wood formation in larch. We used the immature latewood cells of two Japanese larch (Larix kaempferi) clones with significant differences in density and in microfibrillar angle (MFA) as materials to analyze their gene expression profiles. A total of 1735 differentially expressed genes were detected in immature latewood cells of the two clones, among which, 971 were up-regulated and 764 were down-regulated. Digital gene expression profiling analysis revealed that genes encoding transcription factor members NAC66 and R2R3-MYB4, microtubule-associated protein, actin-related protein, cell wall protein members, arabinogalactan protein, Fasciclin-like arabinogalactan protein and glycine-rich protein, and several cell-wall-synthesis genes affected wood density and MFA by regulating latewood formation at transcriptional level. Our study results represent a basis for selection of quality traits and genetic improvement of larch wood.

Keywords

Japanese larch / Wood formation / Transcription regulation / Wood property / Digital gene expression profiling

Cite this article

Download citation ▾
Shae He, Yunhui Xie, Xiaomei Sun, Shougong Zhang. Comparative transcriptome analyses reveal candidate genes regulating wood quality in Japanese larch (Larix kaempferi). Journal of Forestry Research, 2019, 31(1): 65-73 DOI:10.1007/s11676-019-00997-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bedon F, Grima-Pettenati J, Mackay J. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biol, 2007, 7: 17.

[2]

Camargo ELO, Raphaël P, Hua CW, Fabien M, Jacqueline GP. Cánovas FM. Chapter seven—Digging in wood: new insights in the regulation of wood formation in tree species. Advance in botanical research, 2019, Cambridge: Academic Press 201 233

[3]

Chai GH, Qi G, Cao YP, Wang ZG, Yu L, Tang XF, Yu YC, Wang D, Kong YZ, Zhou GK. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar. New Phytol, 2014, 203(2): 520-534.

[4]

Chen JH, Chen BB, Zhang DQ. Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genom, 2015, 16: 164.

[5]

Chen DS, Zhang SG, Zhang RF, Sun XM. Modeling wood density and elastic modulus with nonliear mixed models for Larix Kaempferi. J Temp For Res, 2018, 1(4): 19-29.

[6]

Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA, 2009, 106(31): 13118-13123.

[7]

Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics, 2010, 185(4): 1477-1487.

[8]

Evans R, Ilic J. Rapid prediction of wood stiffness from microfibril angle and density. For Prod J, 2001, 51(3): 53-57.

[9]

Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, Kumar M, Burgert I, Niittylä T, Sundberg B. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytol, 2014, 203(4): 1220-1230.

[10]

Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G. A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA, 2001, 98(25): 14732-14737.

[11]

Izhaki A, Bowman JL. KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell, 2007, 19(2): 495-508.

[12]

Kim WC, Kim JY, Ko JH, Kim J, Han KH. Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall-associated cellulose synthases in Arabidopsis thaliana. J Plant Physiol, 2013, 170(15): 1374-1378.

[13]

Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol, 2010, 188(3): 774-786.

[14]

Li XG, Wu HX, Dillon SK, Southerton SG. Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genom, 2009, 10: 41.

[15]

Li XG, Wu HX, Southerton SG. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytol, 2010, 187(3): 764-776.

[16]

Li XG, Wu HX, Southerton SG. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genom, 2011, 12: 480.

[17]

Li XG, Yang XH, Wu HX. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism. BMC Genom, 2013 14 1 768

[18]

Li SF, Zhang YX, Ding CJ, Gao X, Wang R, Mo WJ, Lv FL, Wang SL, Liu L, Tang ZM, Tian H, Zhang JH, Zhang BY, Huang QJ, Lu MZ, Wuyun TN, Hu ZM, Xia YX, Su XH. Proline-rich protein gene PdPRP regulates secondary wall formation in poplar. J Plant Physiol, 2019, 233: 58-72.

[19]

Lu SF, Li LG, Yi XP, Joshi CP, Chiang VL. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. J Exp Bot, 2008, 59(3): 681-695.

[20]

MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J, 2010, 62(4): 689-703.

[21]

Mao TL, Jin LF, Li H, Liu B, Yuan M. Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol, 2005, 138: 654-662.

[22]

McCarthy RL, Zhong RQ, Ye ZH. Secondary wall NAC binding element (SNBE), a key cis-acting element required for target gene activation by secondary wall NAC master switches. Plant Signal Behav, 2011, 6(9): 1282-1285.

[23]

Mizrachi E, Verbeke L, Christie N, Fierro AC, Mansfield SD, Davis MF, Gjersing E, Tuskan GA, Van Montagu M, Van de Peer Y, Marchal K, Myburg AA. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. Proc Natl Acad Sci USA, 2017, 114(5): 1195-1200.

[24]

Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci, 2015 6 288 288

[25]

Ohashi-lto K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell, 2010, 22(10): 3461-3473.

[26]

Pavy N, Boyle B, Nelson C, Paule C, Giguère I, Caron S, Parsons LS, Dallaire N, Bedon F, Bérubé H, Cooke J, Mackay J. Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytol, 2008, 180(4): 766-786.

[27]

Pesquet E, Ranocha P, Legay S, Digonnet C, Barbier O, Pichon M, Goffner D. Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol, 2005, 139(4): 1821-1839.

[28]

Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell, 2004, 16(9): 2278-2292.

[29]

Shi R, Sun YH, Li QZ, Heber S, Sederoff R, Chiang VL. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol, 2010, 51(1): 144-163.

[30]

Spokevicius AV, Southerton SG, MacMillan CP, Qiu DY, Gan SM, Tibbits JF, Moran GF, Bossinger G. Beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J, 2007, 51(4): 717-726.

[31]

Struk S, Dhonukshe P. MAPs: cellular navigators for microtubule array orientations in Arabidopsis. Plant Cell Rep, 2014, 33(1): 1-21.

[32]

Villalobos DP, Díaz-Moreno SM, Said SS, Cañas RA, Osuna D, Van Kerckhoven SH, Bautista R, Claros MG, Cánovas FM, Cantón FR. Reprogramming of gene expression during compression wood formation in pine: coordinated modulation of S-adenosylmethionine, lignin and lignan related genes. BMC Plant Biol, 2012 12 1 100

[33]

Wightman R, Turner SR. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J, 2008, 54(5): 794-805.

[34]

Ye ZH, Zhong RQ. Molecular control of wood formation in trees. J Exp Bot, 2015, 66(14): 4119-4131.

[35]

Yuan S, Wang Y, Dean JF. ACC oxidase genes expressed in the wood-forming tissues of loblolly pine (Pinus taeda L.) include a pair of nearly identical paralogs (NIPs). Gene, 2010, 453(1): 24-36.

[36]

Zhang DQ, Du QZ, Xu BH, Zhang ZY, Li BL. The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics, 2010, 284(2): 105-119.

[37]

Zhong RQ, Lee CH, Zhou JL, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 2008, 20(10): 2763-2782.

[38]

Zhong RQ, Lee CH, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol, 2010, 152(2): 1044-1055.

[39]

Zhong RQ, Lee CH, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant, 2010, 3(6): 1087-1103.

[40]

Zhong Q, McCarthy RL, Haghighat M, Ye ZH. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One, 2013 8 7 e69219

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/