Spruce forest stands in a stationary state

Petri P. Kärenlampi

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1167 -1178.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1167 -1178. DOI: 10.1007/s11676-019-00971-4
Original Paper

Spruce forest stands in a stationary state

Author information +
History +
PDF

Abstract

We present stationarity criteria for forest stands, and establish embodiments using a Norwegian empirical stand development model. The natural stationary states only slightly differ from the outcome of long-term simulations previously implemented using the same empirical model. Human interference in terms of diameter-limit cutting is introduced. Consequently, stationary states differing from the natural one appear. Standing volume, growth and monetary value appear low but the financial return rate may be significant. Volume yield and financial return clearly contradict each other, the former arising from harvesting large trees, the latter from frequent removal of small trees. An exponential tree size distribution does not appear to comply with the stationarity criterion.

Keywords

Growth / Plenterwald (selection cutting) / Recruitment / Stand development / Yield

Cite this article

Download citation ▾
Petri P. Kärenlampi. Spruce forest stands in a stationary state. Journal of Forestry Research, 2019, 30(4): 1167-1178 DOI:10.1007/s11676-019-00971-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aakala T, Kuuluvainen T, Wallenius T, Kauhanen H. Contrasting patterns of tree mortality in late-successional Picea abies stands in two areas of northern Fennoscandia. J Veg Sci, 2009, 20: 1016-1026.

[2]

Bollandsås OM, Buongiorno J, Gobakken T. Predicting the growth of stands of trees of mixed species and size: a matrix model for Norway. Scand J For Res, 2008, 23: 167-178.

[3]

Brzeziecki B, Pommerening A, Miścicki S, Drozdowski S, Żybura H. A common lack of demographic equilibrium among tree species in Białowieża National Park (NE Poland): evidence from long-term plots. J Veg Sci, 2016, 27: 460-469.

[4]

Buongiorno J, Halvorsen EA, Bollandsås OM, Gobakken T, Hofstad O. Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of economic supply of carbon storage. Scand J For Res, 2012, 27(5): 460-473.

[5]

Buongiorno J, Peyron JL, Houllier F, Bruciamacchie M. Growth and management of mixed-species, uneven-aged forests in the French Jura: Implications for the economic returns and tree diversity. For Sci, 1995, 41: 397-429.

[6]

Busing RT. Canopy cover and tree regeneration in old-growth cove forests of the Appalachian Mountains. Vegetatio, 1994, 115: 19-27.

[7]

Chang SJ, Gadow KV. Application of the generalized Faustmann model to uneven-aged forest management. J For Econ, 2010, 16(4): 313-325.

[8]

Coomes DA, Duncan RP, Allen RB, Truscott J. Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett, 2003, 6(11): 980-989.

[9]

de Liocourt F. De l’amenagement des sapinières. Bull Trimest, Soc For Franche-Comté Belfort, 1898, 1898: 396-409.

[10]

Drössler L, Nilsson U, Lundqvist L. Simulated transformation of even-aged Norway spruce stands to multi-layered forests: an experiment to explore the potential of tree size differentiation. Forestry, 2014, 87(2): 239-248.

[11]

Goodburn JM, Lorimer CG. Population structure in old-growth and managed northern hardwoods: an examination. For Ecol Manage, 1999, 118(1–3): 11-29.

[12]

Halvorsen E, Buongiorno J, Bollandsås OM (2015) NorgePro: a spreadsheet program for the management of all-aged, mixed-species Norwegian forest stands. http://labs.russell.wisc.edu/buongiorno/files/NorgePro/NorgeProManual_4_24_15.doc. Accessed 10 May 2019

[13]

Helliwell DR. Dauerwald. Forestry, 1997, 70(4): 375-379.

[14]

Hyytiäinen K, Hari P, Kokkila T, Mäkelä A, Tahvonen O, Taipale J. Connecting a process-based forest growth model to a stand level economic optimization. Can J For Res, 2004, 34: 2060-2073.

[15]

Kerr G. The management of silver fir forests: de Liocourt (1898) revisited. Forestry, 2014, 87(1): 29-38.

[16]

Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. J Ecol, 2003, 91: 797-806.

[17]

Kuusela K. Suurin kestävä hakkuusuunnite ja menetelmä sen arvioimiseksi. Acta For Fenn, 1961, 71(1): 1-36.

[18]

Lundqvist L. Some notes on the regeneration of Norway spruce on six permanent plots managed with single-tree selection. For Ecol Manage, 1991, 46(1): 49-57.

[19]

Lundqvist L. Changes in the stand structure on permanent Picea abies plots managed with single–tree selection. Scand J For Res, 1993, 8(4): 510-517.

[20]

Lundqvist L, Nilson K. Regeneration dynamics in an uneven-aged virgin Norway spruce forest in northern Sweden. Scand J For Res, 2007, 22(4): 304-309.

[21]

Lundqvist L, Spreer S, Karlsson C. Volume production in different silvicultural systems for 85 years in a mixed Picea abies–Pinus sylvestris forest in central Sweden. Silva Fenn, 2013 47 1 897

[22]

Lundqvist L. Tamm review: selection system reduces long-term volume growth in Fennoscandic uneven-aged Norway spruce forests. For Ecol Manage, 2017, 391: 362-375.

[23]

Muller-Landau HC, Condit RS, Harms KE, Marks CO, Thomas SC, Bunyavejchewin S, Chuyong G, Co L, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Hart T, Hubbell SP, Itoh A, Kassim AR, Kenfack D, LaFrankie JV, Lagunzad D, Lee HS, Losos E, Makana JR, Ohkubo T, Samper C, Sukumar R, Sun IF, Nur Supardi MN, Tan S, Thomas D, Thompson J, Valencia R, Vallejo MI, Muñoz GV, Yamakura T, Zimmerman JK, Dattaraja HS, Esufali S, Hall P, He F, Hernandez C, Kiratiprayoon S, Suresh HS, Wills C, Ashton P. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol Lett, 2006, 9: 589-602.

[24]

Newbery D, Burgt X, Moravie MAD. Structure and inferred dynamics of a large grove of Microberlinia bisulcata trees in central African rain forest: The possible role of periods of multiple disturbance events. J Trop Ecol, 2004, 20(2): 131-143.

[25]

O'hara KL, Hasenauer H, Kindermann G. Sustainability in multi-aged stands: an analysis of long-term plenter systems. Forestry, 2007, 80(2): 163-181.

[26]

Pearse PH. The optimum forest rotation. For Chron, 1967, 43(2): 178-195.

[27]

Picard N, Gasparotto D. Liocourt’s law for tree diameter distribution in forest stands. Ann For Sci, 2016, 73: 751.

[28]

Pukkala T. Puun hinta ja taloudellisesti optimaalinen hakkuun ajankohta. Metsätieteen aikakauskirja, 2006, 1(2006): 33-48.

[29]

Pukkala T. Plenterwald, Dauerwald, or clearcut?. For Policy Econ, 2016, 62: 125-134.

[30]

Pukkala T, Lähde E, Laiho O. Growth and yield models for uneven-sized forest stands in Finland. For Ecol Manage, 2009, 258(3): 207-216.

[31]

Pukkala T, Lähde E, Laiho O. Optimizing the structure and management of uneven-sized stands in Finland. Forestry, 2010, 83(2): 129-142.

[32]

Pyy J, Ahtikoski A, Laitinen E (2017) Introducing a non-stationary matrix model for stand-level optimization, an even-aged pine (Pinus sylvestris L.) stand in Finland. Forests 8:163. https://doi.org/10.3390/f8050163

[33]

Rämö J, Tahvonen O. Economics of harvesting boreal uneven-aged mixed-species forests. Can J For Res, 2015, 45(8): 1102-1112.

[34]

Rämö J, Tahvonen O. Optimizing the harvest timing in continuous cover forestry. Environ Resour Econ, 2016, 67(4): 853-868.

[35]

Schütz JP. Dynamique et conditions d'équilibre de peuplements jardinés sur les stations de la hêtraie à sapin. Schweiz Z Forstwes, 1975, 126(9): 637-671.

[36]

Schütz JP (1997) The swiss experience: more than one hundred years of experience with a single-tree-selection management system in mountainous mixed-forests of spruce, fir and beech. From an empirically developed utilization in small-scale private forests to an elaborate and original concept of silviculture. IUFRO interdisciplinary uneven-aged management symposium at Oregon State University, Corvallis, September 1997.

[37]

Schütz JP. Modelling the demographic sustainability of pure beech plenter forests in Eastern Germany. Ann For Sci, 2006, 63(1): 93-100.

[38]

Schütz JP, Saniga M, Diaci J, Vrška T. Comparing close-to-nature silviculture with processes in pristine forests: lessons from Central Europe. Ann For Sci, 2016, 73(4): 911-921.

[39]

Sinha A, Rämö J, Malo P, Kallio M, Tahvonen O. Optimal management of naturally regenerating uneven-aged forests. Eur J Oper Res, 2017, 256(3): 886-900.

[40]

Tahvonen O, Rämö J. Optimality of continuous cover vs. clearcut regimes in managing forest resources. Can J For Res, 2016, 46(7): 891-901.

[41]

Tahvonen O. Optimal structure and development of uneven-aged Norway spruce forests. Can J For Res, 2011, 41(12): 2389-2402.

[42]

Tahvonen O. Economics of rotation and thinning revisited: the optimality of clearcuts versus continuous cover forestry. For Policy Econ, 2016, 62: 88-94.

[43]

Valkonen S, Lappalainen S, Lähde E, Laiho O, Saksa T. Tree and stand recovery after heavy diameter-limit cutting in Norway spruce stands. For Ecol Manage, 2017, 389: 68-75.

[44]

Vlam M, van der Sleen P, Groenendijk P, Zuidema PA. Tree age distributions reveal large-scale disturbance-recovery cycles in three tropical forests. Front Plant Sci, 2016, 7: 1984.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/