Multiallelic and multilocus simple sequence repeats (SSRs) to assess the genetic diversity of a Salix spp. germplasm collection

Giorgia Carletti , Luigi Cattivelli , Lorenzo Vietto , Giuseppe Nervo

Journal of Forestry Research ›› 2019, Vol. 32 ›› Issue (1) : 263 -271.

PDF
Journal of Forestry Research ›› 2019, Vol. 32 ›› Issue (1) : 263 -271. DOI: 10.1007/s11676-019-00913-0
Original Paper

Multiallelic and multilocus simple sequence repeats (SSRs) to assess the genetic diversity of a Salix spp. germplasm collection

Author information +
History +
PDF

Abstract

Salix L. (willow) is the largest genus of the family Salicaceae and plays an important role in riparian habitats, wetlands and in shrub tundra. Due to the different implications for the species belonging to this family, it is fundamental to identify molecular tools characterizing relevant clones. A set of six multilocus and multiallelic simple sequence repeat (SSRs) markers are presented, leading to 390 polymorphic fragments considered as single dominant markers and able to discriminate successfully 92 S. alba L. from 24 Salix spp. The polymorphic fragments have been used to perform genetic diversity studies, and to investigate population structures and cluster analysis in a germplasm collection. The results highlight the capability of the six SSRs to be powerful genetic resources in applied forestry research, both to distinguish S. alba clones from Salix spp. and to perform genetic population studies for breeding programs.

Keywords

Microsatellites / Salix / Genetic diversity

Cite this article

Download citation ▾
Giorgia Carletti, Luigi Cattivelli, Lorenzo Vietto, Giuseppe Nervo. Multiallelic and multilocus simple sequence repeats (SSRs) to assess the genetic diversity of a Salix spp. germplasm collection. Journal of Forestry Research, 2019, 32(1): 263-271 DOI:10.1007/s11676-019-00913-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Argus GW. Infrageneric classification of New World Salix L. (Salicaceae). Syst Bot Monogr, 1997, 52: 1-121.

[2]

Argus GW, Eckenwalder JE, Kiger RW. Kiger RW. Salicaceae. Flora of North America, 2010, Oxford: Oxford University Press.

[3]

Barcaccia G, Meneghetti S, Albertini E, Triest L, Lucchin M. Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba ×  Salix fragilis interspecific hybrids. Heredity, 2003, 90: 169-180.

[4]

Barker JHA, Pahlich A, Trybush S, Edwards KJ, Karp A. Microsatellite markers for diverse Salix species. Mol Ecol Notes, 2003, 3(1): 4-6.

[5]

Botstein D, White RL, Skolnick M, Davis RW. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.

[6]

Bozzi JA, Liepelt S, Ohneiser S, Gallo LA, Marchelli P, Leyer I, Ziegenhagen B, Mengel C. Characterization of 23 polymorphic SSR markers in Salix humboldtiana (Salicaceae) using next-generation sequencing and cross-amplification from related species. Appl Plant Sci, 2015, 3: 1400120.

[7]

Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4(2): 359-361.

[8]

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620.

[9]

Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour, 2010, 10: 564-567.

[10]

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567-1587.

[11]

Fang ZF, Zhao SD, Skvortsov AK. Wu Z, Raven PH. Salicaceae. Flora of China, 1999, St. Louis: Missouri Botanical Garden Press 139 274

[12]

Gupta A, Singh NB, Ginwal HS (2009) Molecular characterization and assessment of intraspecific relationship among Salix alba clones using RAPD markers. Ind J Biotech (Communicated)

[13]

Hamrick J, Godt M. Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci, 1996, 351: 1291-1298.

[14]

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23: 1801-1806.

[15]

Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I. Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol, 2011, 53: 151-165.

[16]

Lauron-Moreau A, Pitre FE, Brouillet L, Labrecque M. Markers of willow species and characterization of 11 polymorphic microsatellites for Salix eriocephala (Salicaceae), a potential native species for biomass production in Canada. Plants, 2013, 2(2): 203-210.

[17]

Perdereau AC, Kelleher CT, Douglas GC, Hodkinson TR. High levels of gene flow and genetic diversity in Irish populations of Salix caprea L. inferred from chloroplast and nuclear SSR markers. BMC Plant Biol, 2014 14 1 202

[18]

Pritchard JK, Stevens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.

[19]

Rousset F. Genetic differentiation and estimation of geneflow from F-statistics under isolation by distance. Genetics, 1997, 145: 1219-1228.

[20]

Singh NB, Joshi S, Choudhary P, Sharme JP. SSR DNA marker aided genetic diversity assessment of selected willow clones. Genetika, 2013, 45(2): 527-536.

[21]

Smulders MJM, van der Schoot J, Arens P, Vosman B. Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Mol Ecol Notes, 2001, 1: 188-190.

[22]

Trybush S, Jahodova S, Macalpine W, Karp A. A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species. Bioenergy Res., 2008, 1: 67-79.

[23]

Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X. High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS ONE, 2014 9 2 e87381

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/