Forest fire risk indices and zoning of hazardous areas in Sorocaba, São Paulo state, Brazil

Leonardo Guimarães Ziccardi , Cláudio Roberto Thiersch , Aurora Miho Yanai , Philip Martin Fearnside , Pedro José Ferreira-Filho

Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (2) : 581 -590.

PDF
Journal of Forestry Research ›› 2019, Vol. 31 ›› Issue (2) : 581 -590. DOI: 10.1007/s11676-019-00889-x
Original Paper

Forest fire risk indices and zoning of hazardous areas in Sorocaba, São Paulo state, Brazil

Author information +
History +
PDF

Abstract

This study compares the performance of three fire risk indices for accuracy in predicting fires in semi-deciduous forest fragments, creates a fire risk map by integrating historical fire occurrences in a probabilistic density surface using the Kernel density estimator (KDE) in the municipality of Sorocaba, São Paulo state, Brazil. The logarithmic Telicyn index, Monte Alegre formula (MAF) and enhanced Monte Alegre formula (MAF+) were employed using data for the period 1 January 2005 to 31 December 2016. Meteorological data and numbers of fire occurrences were obtained from the National Institute of Meteorology (INMET) and the Institute for Space Research (INPE), respectively. Two performance measures were calculated: Heidke skill score (SS) and success rate (SR). The MAF+ index was the most accurate, with values of SS and SR of 0.611% and 62.8%, respectively. The fire risk map revealed two most susceptible areas with high (63 km2) and very high (47 km2) risk of fires in the municipality. Identification of the best risk index and the generation of fire risk maps can contribute to better planning and cost reduction in preventing and fighting forest fires.

Keywords

Forest fire risk maps / Forest fire protection / Monitoring / Monte Alegre formula

Cite this article

Download citation ▾
Leonardo Guimarães Ziccardi, Cláudio Roberto Thiersch, Aurora Miho Yanai, Philip Martin Fearnside, Pedro José Ferreira-Filho. Forest fire risk indices and zoning of hazardous areas in Sorocaba, São Paulo state, Brazil. Journal of Forestry Research, 2019, 31(2): 581-590 DOI:10.1007/s11676-019-00889-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amatulli G, Peréz-Cabello F, de la Riva J. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol Model, 2007, 200(3): 321-333.

[2]

Bernier PY, Gauthier S, Jean PO, Manka F, Boulanger Y, Beaudoin A, Guindon L. Mapping local effects of forest properties on fire risk across Canada. Forests, 2016 7 8 157

[3]

Bonham-Carter GF. Geographic information systems for geoscientists: modelling with GIS, 1994, Ottawa: Pergamon.

[4]

Borges TS, Fiedler NC, dos Santos AR, Loureiro EB, Mafia RG. Desempenho de alguns índices de risco de incêndios em plantios de eucalipto no norte do Espírito Santo [Performance of some fire risk indices in eucalyptus plantations in northern Espirito Santo]. Floresta e Ambiente, 2011, 18(2): 153-159.

[5]

Canavesi V, Célia R, Alval R, Cunha AP, Cunha A (2011) Analise espaço temporal dos plantios de Eucalyptus spp. no Estado de São Paulo [Spatiotemporal analysis of Eucalyptus spp. plantations in the state of São Paulo]. Anais XV Simposio Brasileiro de Sensoriamento Remoto—SBSR, Curitiba, PR, Brazil, INPE p 2113

[6]

Castro F, Tudela A, Sebasti MT. Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric For Meteorol, 2003, 116(1): 49-59.

[7]

Chandler C, Cheney P, Thomas P, Trabaud L, Williams D. Fire in forestry. Volume 1. Forest fire behavior and effects. Volume 2. Forest fire management and organization, 1983, New York: John Wiley.

[8]

Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P, de la Riva J, Baeza J, Rodríguez F, Molina J, Herrera M, Zamora R. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model, 2010, 221(1): 46-58.

[9]

Collins L, Penman T, Ximenes FA, Binns D, York A, Bradstock R. Impacts of frequent burning on live tree carbon biomass and demography in post-harvest regrowth forest. Forests, 2014, 5(4): 802-821.

[10]

da Silva ID, Pontes AC Jr. Elaboração de um fator de risco de incêndios florestais utilizando lógica fuzzy [Development of a risk factor for forest fires using fuzzy logic]. Biomatematica, 2011, 21: 113-128.

[11]

Dalcumune MAB, Santos A (2005) Mapeamento de índice de risco de incêndio para a regiao da grande Vitoria/ES, utilizando imagens do satélite Landsat para o ano de 2002 [Mapping of the fire risk index for the region of greater Vitoria/ES using images from the Landsat satellite for the year 2002]. Anais do XII Simposio Brasileiro de Sensoriamento Remoto pp 1485–1492

[12]

De la Riva J, Pérez-Cabello F, Lana-Renault N, Koutsias N. Mapping wildfire occurrence at regional scale. Remote Sens Environ, 2004, 92(3): 363-369.

[13]

Deeming JEJE, Burgan RE, Cohen JD (1977) The national fire-danger rating system, 1978. Tech. rep

[14]

Díaz-Delgado R, Lloret F, Pons X. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc Ecol, 2004, 19(7): 731-745.

[15]

Duarte L, Teododo AC. An easy, accurate and efficient procedure to create forest fire risk maps using the SEXTANTE plugin Modeler. J For Res, 2016, 27(6): 1361-1372.

[16]

EMBRAPA (2006) Empresa brasileira de pesquisa agropecuária [Brazilian agricultural research corporation]. http://www.embrapa.br. Accessed 9 March 2015

[17]

Fearnside PM, Barbosa RI. Incêndios na Amazônia brasileira: estimativa da emissão de gases do efeito estufa pela queima de diferentes ecossistemas de Roraima na passagem do evento El Niño (1997/1998) [Fires in the Brazilian Amazon: estimation of the emission of greenhouse gases by the burning of different ecosystems of Roraima in the passage of the El Niño (1997/1998)]. Acta Amazonica, 1999, 29(4): 513-534.

[18]

Fiedler NC. Incêndios florestais no Parque Nacional da Serra da Canastra: desafios para a conservação da biodiversidade [Forest fires in Serra da Canastra National Park: challenges for biodiversity conservation]. Ciência Florestal, 2004, 14(2): 157-168.

[19]

Franca Tetto A, Batista AC, Soares Nunes JR, Viana Soares R. Subsdios à prevenção e combate a incêndios florestais com base no comportamento da precipitação pluviométrica na Floresta Nacional de Irati, Paraná [subsidies for the prevention and combat of forest fires based on rainfall behaviour in the Irati National Forest, Paraná]. Ciência Florestal, 2010, 20(1): 33-43.

[20]

Gatrell AC, Bailey TC, Diggle PJ, Rowlingson BS. Spatial point pattern analysis and its application in geographical epidemiology. Trans Inst Br Geogr, 1996, 21: 256-274.

[21]

IBGE (2017) Instituto Brasileiro de Geografia e Estatstica [Brazilian Institute of Geography and Statistics]. http://www.ibge.gov.br. Accessed 13 Dec 2017

[22]

Ikematsu P, da Silva AM, de Paula FP, Nogueira DP, Silveira FM, Alves SH, Bomback M. Dimensionamento e estudo dos fatores condicionantes de duas voçorocas localizadas no município de Sorocaba (SP) [Dimensioning and study of the conditioning factors of two gullies located in the municipality of Sorocaba (SP)]. Caminhos de Geografia, 2007, 8(24): 76-85.

[23]

Keeley JE, Lubin D, Fotheringham C. Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada. Ecol Appl, 2003, 13(5): 1355-1374.

[24]

Koutsias N, Kalabokidis KD, Allgower B. Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods. Nat Resour Model, 2004, 17(4): 359-375.

[25]

Kronka FJ, Nalon MA, Matsukuma CK et al (2002) Inventário florestal das áreas reflorestadas no Estado de São Paulo [Forest inventory of reforested areas in the state of São Paulo]. SMA/IF, p 184

[26]

Kuter N, Yenilmez F, Kuter S. Forest fire risk mapping by kernel density estimation. Croatian J For Eng, 2011, 32(2): 599-610.

[27]

Mafalda V, Torres F, Ribeiro G. Eficiência de índices de perigo de incêndios baseados em elementos climáticos no município de Juiz de Fora—MG [Efficiency of fire hazard indexes based on climatic elements in the municipality of Juiz de Fora—MG], 2009, Viçosa: XIII SBGFA-Simpósio Brasileiro de Geografia Física Aplicada.

[28]

Malowerschnig B, Sass O. Long-term vegetation development on a wildfire slope in Innerzwain (Styria, Austria). J For Res, 2014, 25(1): 103-111.

[29]

Martell DL, Otukol S, Stocks BJ. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Can J For Res, 1987, 17(5): 394-401.

[30]

Montiel Molina C, Galiana-Martín L. Fire scenarios in Spain: a territorial approach to proactive fire management in the context of global change. Forests, 2016 7 11 273

[31]

Moretti M, Duelli P, Obrist MK. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia, 2006, 149(2): 312-327.

[32]

Morgan P, Hardy CC, Swetnam TW, Rollins MG, Long DG. Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns. Int J Wildland Fire, 2001, 10(4): 329-342.

[33]

Narciso M, Soriano B, Daniel O, Maximo F (2011) Proposta de método para seleção de indicador de risco de incêndio por região [Proposal of method for selection of fire risk indicator by region]. Embrapa Pantanal- Boletim de Pesquisa e Desenvolvimento (INFOTECA-E)

[34]

Nesterov V. Fire frequency index and method of its estimation, 1949, Moscow: Goslesbumaga (in Russian)

[35]

Nunes JRS (2007) Sistema integrado de controle de incêndios florestais para o estado do Paraná [Integrated forest fire control system for the state of Paraná]. Ph.D. thesis, UFPR

[36]

Nunes JRS (2008) Desempenho da Fórmula de Monte Alegre (FMA) e da Fórmula de Monte Alegre alterada (FMA+) no Distrito Florestal de Monte Alegre, município de Telêmaco Borba, Paraná [Performance of the Monte Alegre Formula (MAF) and Monte Alegre modified formula (FMA+) in the Monte Alegre Forest District, Telêmaco Borba, Paraná], pp. 70. Ph.D. thesis, UFPR

[37]

Nunes JRS, Soares RV, Batista AC. FMA+—um novo índice de perigo de incêndios florestais para o Estado do Paraná, Brasil [FMA+—a new forest fire hazard index for the State of Paraná, Brazil]. Revista Floresta, 2006, 36(1): 75-91.

[38]

Nunes JRS, Fier ISN, Soares RV, Batista AC. Desempenho da formula de Monte Alegre (FMA) e da formula de Monte Alegre alterada (FMA+) no Distrito Florestal de Monte Alegre [Performance of the Monte Alegre formula (FMA) and Monte Alegre modified formula (FMA+) in the Forest District of Monte Alegre]. Revista Floresta, 2010, 40(2): 319-326.

[39]

Parzen E. On estimation of a probability density function and mode. Ann Math Stat, 1962, 33(3): 1065-1076.

[40]

Portier J, Gauthier S, Leduc A, Arseneault D, Bergeron Y. Fire regime along latitudinal gradients of continuous to discontinuous coniferous boreal forests in eastern Canada. Forests, 2016 7 10 211

[41]

Roberts GJ, Wooster MJ. Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans Geosci Remote Sens, 2008, 46(4): 1200-1218.

[42]

Robinne FN, Miller C, Parisien MA, Emelko MB, Bladon KD, Silins U, Flannigan M. A global index for mapping the exposure of water resources to wildfire. Forests, 2016 7 1 22

[43]

Rodriguez N, Moretti A (1988) Indice de peligro de propagación de incendios forestales [Index of propagation danger of forest fires]. In: 6. Congreso Forestal Argentino. Santiago del Estero (Argentina). 16–20 Ago 1988, vol 3, pp 704–709

[44]

Sampaio OB (1999) Analise da eficiência de quatro índices na previsão de incêndios florestais para a região de Agudos-SP [Analysis of the efficiency of four indices in the prediction of forest fires for the region of Agudos-SP]. Ph.D. thesis, UFPR

[45]

SantAnna CM, Fiedler NC, Minette LJ (2007) Controle de incêndios florestais [Control of forest fires]. Alegre: Suprema p 152

[46]

Soares R (1972) Determinação de um índice de perigo de incêndio para a região centro paranaense, Brasil [determination of a fire hazard index for the central region of Paraná, Brazil]. turrialba, costa rica, 72 pp. Master’s thesis, CATIE/IICA

[47]

Soares RV. Desempenho da “Fórmula de Monte Alegre” índice brasileiro de perigo de incêndios florestais [Performance of the “Monte Alegre Formula” Brazilian index of forest fire hazard]. Cerne, 1998, 4(1): 87-89.

[48]

Soares RV, Batista AC (2007) Incêndios florestais: controle, efeitos e uso do fogo [Forest fires: control, effects and use of fire]. 223–238, Universidade Federal do Paraná

[49]

Sousa C (2000) Relatório do projeto de cartografia de risco de incêndio florestal-CRIF 2ª fase [Report of the forest fire risk cartography project- CRIF 2nd phase]. http://www.terravista.pt. Accessed 19 April 2017)

[50]

Telicyn G. Logarithmic index of fire weather danger for forests. Lesnoe Khozyaistvo, 1970, 11: 58-59.

[51]

Van Wagner C (1987) Development and structure of the Canadian forest fire weather index system. In: Can. For. Serv., Forestry Tech. Rep, Citeseer

[52]

Wastl C, Schunk C, Leuchner M, Pezzatti GB, Menzel A. Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agric For Meteorol, 2012, 162: 1-13.

[53]

White BLA, White LAS, Ribeiro GT, Fernandes PAM. Development of a fire danger index for eucalypt plantations in the northern coast of Bahia, Brazil. Floresta, 2013, 43(4): 601-610.

[54]

White LAS, White BLA, Ribeiro GT. Evaluation of forest fire danger indexes for eucalypt plantations in Bahia, Brazil. Int J For Res, 2015, 2015: 6. (613736)

[55]

Whitlock C, Shafer SL, Marlon J. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern us and the implications for ecosystem management. For Ecol Manage, 2003, 178(1): 5-21.

[56]

Wohlgemuth T, Moretti M, Conedera M, Moser B. Ecological resilience after fire in mountain forests of the central Alps. For Ecol Manage, 2006 234 1 S200

[57]

Wotton BM, Nock CA, Flannigan MD. Forest fire occurrence and climate change in Canada. Int J Wildland Fire, 2010, 19(3): 253-271.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/