Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia

David Juřička , Jitka Novotná , Jakub Houška , Jana Pařílková , Jan Hladký , Václav Pecina , Hana Cihlářová , Marcela Burnog , Jakub Elbl , Zdena Rosická , Martin Brtnický , Jindřich Kynický

Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (1) : 197 -208.

PDF
Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (1) : 197 -208. DOI: 10.1007/s11676-018-0866-4
Original Paper

Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia

Author information +
History +
PDF

Abstract

The objective of this study is to investigate the potential causes of widespread Larix sibirica Ledeb. mortality observed in the Khentii massif of northern Mongolia. The ratio of deadwood to living trees in affected stands in the Goricho region, the southernmost study site situated close to the Gobi Desert, was as high as 3.6:1. Moisture fluctuations monitored over 2 years using electrical impedance spectrometry revealed that the Goricho study site had higher soil moisture levels than the two less affected sites Barun Bayan and Dzun Bayan. High soil moisture was recorded in an area characterized by highly skeletal soils, ones with more than 35% by volume of rock fragments, and comparatively shallow soil horizons, from valley to mountains. The layer of permafrost influencing hydrogeological processes is much deeper in the Goricho region compared to the undisturbed study sites. Redundancy analysis confirmed a significant number of dead L. sibirica on sites with developed soils. Live forest stands, however damaged, grow in this region on well-drained scree slopes or on rocky bastions. The mass mortality observed for L. sibirica may be directly linked to accelerated permafrost thaw in the area bordered by the Tuul and the Terelj Rivers. Our assumption is that L. sibirica root system necrosis occurred as a result of long-term waterlogging of developed soils with high spatial heterogeneity, normally able to absorb high quantities of groundwater. The areas unaffected were scree fields and rocky bastions characterized by adequate drainage. All of our findings support the primary stages of large-scale permafrost thaw, i.e., correlating increases in soil moisture with increasing permafrost active layer thickness.

Keywords

Larix sibirica / Mortality / Permafrost thawing / Waterlogging / Mongolia

Cite this article

Download citation ▾
David Juřička, Jitka Novotná, Jakub Houška, Jana Pařílková, Jan Hladký, Václav Pecina, Hana Cihlářová, Marcela Burnog, Jakub Elbl, Zdena Rosická, Martin Brtnický, Jindřich Kynický. Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. Journal of Forestry Research, 2018, 31(1): 197-208 DOI:10.1007/s11676-018-0866-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abaimov AP. Osawa A, Zyryanova O, Matsuura Y, Kajimoto T, Wein R. Geographical distribution and genetics of Siberian larch species. Permafrost ecosystems. Ecological studies (analysis and synthesis), 2010, Dordrecht: Springer 41 58

[2]

Anenkhonov OA, Krivobokov LV. Trends of changes in the floristic composition of forest vegetation in the northern Baikal region upon climate warming. Russ J Ecol, 2006, 37: 251-256.

[3]

Antipin VS, Filippova B, Gerel O, Lyzin AV. Geologic framework and origin of zonal hypabyssal intrusions, 1976, Moscow: Geol Geophys 44 55

[4]

Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob Change Biol, 2014, 20: 824-834.

[5]

Batkhuu N-O, Lee DK, Tsogtbaatar J. Forest and forestry research and education in Mongolia. J Sustain For, 2011, 30: 600-617.

[6]

Bellingham PJ, Richardson SJ, Mason NW, Veltman CJ, Allen RB, Allen WJ, Barker RJ, Forsyth DM, Simon JN, Ramsey DS. Introduced deer at low densities do not inhibit the regeneration of a dominant tree. For Ecol Manag, 2016, 364: 70-76.

[7]

Bohannon J. The big thaw reaches Mongolia’s pristine north. Science, 2008, 319: 567-568.

[8]

Brahy V, Deckers J, Delvaux B. Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol–Cambisol on loess under deciduous forest in Belgium. Eur J Soil Sci, 2000, 51: 1-13.

[9]

Callegaro L. Electrical impedance: principles, measurement, and applications, 2012, Boca Raton: CRC Press 1 308

[10]

Chenlemuge T, Dulamsuren Ch, Hertel D, Schuldt B, Leuschner Ch, Hauck M. Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients. Acta Oecol, 2015, 63: 28-35.

[11]

Coutts MP, Phylipson JJ. Tolerance of tree roots to waterlogging. I survival of sitka spruce and lodgepole pine. N Phytol, 1977, 80: 63-69.

[12]

Crawford RMM. Plants at the margin: ecological limits and climate change, 2008, New York: Cambridge University Press 203

[13]

Davison EM, Tay FCS. The effects of water logging on seedlings of Eucalyptus Marginata. N Phytol, 1985, 101: 743-753.

[14]

Drury WH. Bog flats and physiographic processes in the Upper Kuskokwim River Region, Alaska. Contrib Gray Herb Harv Univ, 1956, 178: 1-130.

[15]

Dulamsuren C, Hauck M, Leuschner HH, Leuschner C. Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia, 2010, 28: 207-213.

[16]

Ermakov N, Cherosov M, Gogoleva P. Classification of ultracontinental boreal forests in central Yakutia. Folia Geobot, 2002, 37: 419-440.

[17]

FAO. Mongolia—global forest resources assessment 2015—country report, 2015, Rome: Food and Agriculture Organization of the United Nations 11

[18]

Genxu W, Shengnan L, Hongchang H, Yuanshou L. Water regime shifts in the active soil layer of the Qinghai–Tibet Plateau permafrost region, under different levels of vegetation. Geoderma, 2009, 149: 280-289.

[19]

Genxu W, Guangsheng L, Chunjie L. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. J Hydrol, 2012, 444–445: 22-33.

[20]

Gradel A, Heansch Ch, Ganbaatar B, Dovdondemberel B, Nadaldorj O, Günther B. Response of white birch (Betula platyphylla Sukaczev) to temperature and precipitation in the mountain forest steppe and taiga of northern Mongolia. Dendrochronologia, 2017, 41: 24-33.

[21]

Gravis GF. Gravis GF, Zabolotnik SI, Sukhodrovsky VL, Gavrilova MK, Lisun AM. Geographical distribution and thickness of multi-year frozen rock [permafrost]. Geocryological conditions in the People’s Republic of Mongolia, 1974, Moscow: Nauka Publishing 30 48 (in Russian)

[22]

Hauck M, Dulamsuren C, Heimes C. Effects of insect herbivory on the performance of Larix sibirica in a forest-steppe ecotone. Environ Exp Bot, 2008, 62: 351-356.

[23]

Hédl R, Svátek M, Dančák M, Rodzay AW, Salleh AB, Kamariah AS. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam. Blumea Biodivers Evolut Biogeogr Plants, 2009, 54: 124-130.

[24]

Hilbig W, Knapp HD. Vegetation mosaic and floristic elements on the zonal forest-steppe-border in the Chentej Mountains (Mongolia). Flora, 1983, 174: 1-89.

[25]

Iowa State University (2008) Understanding the effects of flooding on trees. https://store.extension.iastate.edu/Product/sul1-pdf. Accessed 23 July 2006

[26]

James TM. Temperature sensitivity and recruitment dynamics of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia’s boreal forest. For Ecol Manag, 2011, 262: 629-636.

[27]

Jones DP, Graham RC. Water-holding characteristics of weathered granitic rock in chaparral and forest ecosystems. Soil Sci Soc Am J, 1993, 57: 256-261.

[28]

Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Clim Change, 2001, 48: 551-579.

[29]

Juřička D, Muchová M, Elbl J, Pecina V, Kynický J, Brtnický M, Rosická Z. Construction of remains of small-scale mining activities as a possible innovative way how to prevent desertification. Int J Environ Sci Technol, 2016, 13: 1405-1418.

[30]

Kaya A, Fang H-Y. Identification of contaminated soils by dielectric constant and electrical conductivity. J Environ Eng, 1997, 123: 169-177.

[31]

Khishigjargal M, Dulamsuren Ch, Leuschner HH, Leuschner Ch, Hauck M. Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe. Acta Oecol, 2014, 55: 113-121.

[32]

Kokelj SV, Riseborough D, Coutts R, Kanigan JCN. Permafrost and terrain conditions at northern drilling-mud sumps: Impacts of vegetation and climate change and the management implications. Cold Reg Sci Technol, 2010, 64: 46-56.

[33]

Kooijman AM, Emmer IM, Fanta J, Sevink J. Natural regeneration potential of the degraded Krkonoše forests. Land Degrad Dev, 2000, 11: 459-473.

[34]

Kozyr IV. Forest vegetation dynamics along an altitudinal gradient in relation to the climate change in Southern Transbaikalia, Russia. Achiev Life Sci, 2014, 8: 23-28.

[35]

Kynický J, Brtnický M, Vavříček D, Uondon M. Pribullova A, Bicarova S. Permafrost and climatic change in Mongolia. Sustainable development and bioclimate. Geophys, 2009 1 Stará Lesná: Slovak Academi of Science 34 35

[36]

Lieffers VJ, Rothwell RL. Effects of depth of water table and substrate temperature on root and top growth of Picea mariana and Larix lancina seedlings. Can J For Res, 1986, 16: 1201-1206.

[37]

Lioubimtseva E, Cole R, Adams JM, Kapustin G. Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ, 2005, 62: 285-308.

[38]

Lloyd AH, Yoshikawa K, Fastie CL, Hinzman L, Fraver M. Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska. Permafr Periglac Process, 2003, 14: 93-101.

[39]

Maasri A, Gelhaus J. The new era of the livestock production in Mongolia: consequences on streams of the Great Lakes Depression. Sci Total Environ, 2011, 409: 4841-4846.

[40]

Marin A. Riders under storms: contributions of nomadic herders’ observations to analysing climate change in Mongolia. Glob Environ Change, 2010, 20: 162-176.

[41]

Mühlenberg M, Appelfelder J, Hoffmann H, Ayush E, Wilson K. Structure of the montane taiga forests of West Khentii, Northern Mongolia. J For Sci, 2012, 58: 45-56.

[42]

Natsagdorj L, Jugder D, Chung YS. Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ, 2003, 37: 1401-1411.

[43]

Oliva M, Fritz M. Permafrost degradation on a warmer Earth: challenges and perspectives. Curr Opin Environ Sci Health, 2018, 5: 14-18.

[44]

Osterkamp TE, Viereck L, Shur Y, Jorgenson MT, Racine C, Falcon L, Doyle A, Boone RD. Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res, 2000, 32: 303-315.

[45]

Otoda T, Sakamoto K, Hirobe M, Undarmaa J, Yoshikawa K. Influences of anthropogenic disturbances on the dynamics of white birch (Betula platyphylla) forests at the southern boundary of the Mongolian forest-steppe. J For Res, 2013, 18: 82-92.

[46]

Owen LA, Richard B, Rhodes EJ, Cunningham WD, Windley BF, Badamgarav J, Drjnamjaa D. Relic permafrost structures in the Gobi of Mongolia: age and significance. J Quat Sci, 1998, 13: 539-547.

[47]

Oyuntuya S, Dorj B, Shurentsetseg B, Bayarjargal E. Badmaev NB, Khutakova CB. Agrometeorological information for the adaptation to climate change. Soils of steppe and forest steppe ecosystems of inner asia and problems of their sustainable utilization, 2015, Ulan-Ude: Buryat State Academy of Agriculture 135 140

[48]

Pařílková J, Radkovský K. Z-meter III—user’s manual, 2011, Brno: Print Copy General 2 3

[49]

Payette S, Delwaide A, Caccianiga M, Beauchemin M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett, 2004, 31: 1-4.

[50]

Pejchal M, Šimek P. Evaluation of potential of woody species vegetation components in objects of landscape architecture. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2012, 60: 199-204.

[51]

Pejchal M, Šimek P. Methodology of wood evaluation for monument care supplies (certified methodology), 2015, Lednice: Mendel University in Brno 29 53 (in Czech)

[52]

Puhua H. Schütt P, Weisgerber H, Schuck H, Lang UM, Roloff A. Betula platyphylla SUK. Enzyklopädie der Holzgewächse—Handbuch und Atlas der Dendrologie, 2014, Weinheim: Wiley 6

[53]

Reimoser F, Armstrong H, Suchant R. Measuring forest damage of ungulates: what should be considered. For Ecol Manag, 1999, 120: 47-58.

[54]

Runyan CW, D’Odorico P. Ecohydrological feedbacks between permafrost and vegetation dynamics. Adv Water Resour, 2012, 49: 1-12.

[55]

Sato T, Kimura F, Kitoh A. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol, 2007, 333: 144-154.

[56]

Sharkhuu A, Sharkhuu N, Etzelmüller B, Heggem ES, Nelson FE, Shiklomanov NI, Goulden CE, Brown J. Permafrost monitoring in the Hovsgol mountain region, Mongolia. J Geophys Res, 2007, 112: 1-11.

[57]

Sinclair W, Lyon HH. Diseases of trees and shrubs, 1987, Ithaca: Cornell University Press 575

[58]

Smith MW, Riseborough DW. Climate and the limits of permafrost: a zonal analysis. Permafr Periglac Process, 2002, 13: 1-15.

[59]

Sternberg PD, Anderson MA, Graham RC, Beyers JL, Tice KR. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma, 1995, 72: 89-98.

[60]

Tsedendash G (1995) Forest vegetation of the Khentey mountains. Dissertation. National University of Mongolia, Mongolia, p 24

[61]

Tsogtbaatar J. Deforestation and reforestation needs in Mongolia. For Ecol Manag, 2004, 201: 57-63.

[62]

Tumurbaatar B, Mijiddorj B. Goulden CE, Sitnikova T, Gelhaus J, Boldvig B. Permafrost and permafrost thaw in Mongolia. The geology, biodiversity and ecology of Lake Hovsgol (Mongolia), 2006, Leiden: Backhuys Publishers 41 48

[63]

Tutubalina OV, Rees WG. Vegetation degradation in a permafrost region as seen from space: Noril’sk (1961–1999). Cold Reg Sci Technol, 2001, 32: 191-203.

[64]

Vitt DH, Halsey LA, Zoltai SC. The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arct Alp Res, 1994, 26: 1-13.

[65]

Walker DA, Jia GJ, Epstein HE, Raynolds MK, Chapin FS III, Copass C, Hinzman LD, Knudson JA, Maier HA, Michaelson GJ, Nelson F, Ping CL, Romanovsky VE, Shiklomanov N. Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafr Periglac Process, 2003, 14: 103-123.

[66]

Wei T, Dong W, Yan Q, Chou J, Yang Z, Tian D. Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions. Adv Atmos Sci, 2016, 33: 632-643.

[67]

Wilde SA, Steinbrenner EC, Pierce RS, Dosen RC, Pronin DT. Influence of forest cover on the state of the ground water table. Soil Sci Soc Am J, 1953, 17: 65-67.

[68]

Witty JH, Graham RC, Hubbert KR, Doolittle JA, Wald JA. Influence of forest cover on the state of the ground water table. Soil Sci Soc Am J, 1953, 17: 65-67.

[69]

Woo MK. Impacts of climatic variability and change on Canadian wetlands. Can Water Resour J, 1992, 17: 63-69.

[70]

Ykhanbai H. Mongolia forestry outlook study, 2010, Bangkok: Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific 21

[71]

You Q, Xue X, Peng F, Dong S, Gao Y. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric For Meteorol, 2017, 232: 48-65.

[72]

Yuan XZR, Song C, Wang H, Zhang J. Electrochemical impedance spectroscopy in PEM fuel cells, 2010, London: Springer 420

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/