Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools

Antonio González-Hernández , Rene Morales-Villafaña , Martin Enrique Romero-Sánchez , Brenda Islas-Trejo , Ramiro Pérez-Miranda

Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 649 -659.

PDF
Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 649 -659. DOI: 10.1007/s11676-018-0858-4
Original Paper

Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools

Author information +
History +
PDF

Abstract

Accurate and reliable predictions of pest species distributions in forest ecosystems are urgently needed by forest managers to develop management plans and monitor new areas of potential establishment. Presence-only species distribution models are commonly used in these evaluations. The maximum entropy algorithm (MaxEnt) has gained popularity for modelling species distribution. Here, MaxEnt was used to model the spatial distribution of the Mexican pine bark beetle (Dendroctonus mexicanus) in a daily fashion by using forecast data from the Weather Research and Forecasting model. This study aimed to exploit freely available geographic and environmental data and software and thus provide a pathway to overcome the lack of costly data and technical guidance that are a challenge to implementing national monitoring and management strategies in developing countries. Our results showed overall agreement values between 60 and 87%. The results of this research can be used for D. mexicanus monitoring and management and may aid as a model to monitor similar species.

Keywords

Spatial analysis / Dendroctonus mexicanus / Geodatabases / MaxEnt / Forest modelling

Cite this article

Download citation ▾
Antonio González-Hernández, Rene Morales-Villafaña, Martin Enrique Romero-Sánchez, Brenda Islas-Trejo, Ramiro Pérez-Miranda. Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools. Journal of Forestry Research, 2018, 31(2): 649-659 DOI:10.1007/s11676-018-0858-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdullah SA, Nakagoshi N. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For Ecol Manag, 2007, 241: 39-48.

[2]

Anderson RP, Lew D, Peterson AT. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model, 2003, 162: 211-232.

[3]

Baker WL. Longterm response of disturbance landscapes to human intervention and global change. Landsc Ecol, 1995, 10: 143-159.

[4]

Castellanos Bolaños JF, Martínez Ruiz EO, Cárdenas Gómez M, Cubas González R. Guía metodológica para combatir plagas de descortezadores de pino en el sur de México, 2013, Agricolas y Pecuarias: Instituto Nacional de Investigaciones Forestales.

[5]

Chefaoiu RM, Hortal J, Lobo JM. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv, 2005, 122: 327-338.

[6]

Colditz RR, Maeda P, López G et al (2010) Classifying the land cover of Mexico in the framework of the North American Land Change Monitoring System. In: American Society for photogrammetry and remote sensing annual conference 2010: opportunities for emerging geospatial technologies, pp 106–113

[7]

Coulson RN, Witter JA. Forest entomology: ecology and management, 1984, New York: Wiley.

[8]

Cuéllar RG, Equihua MA, Estrada VE Fluctuación poblacional de Dendroctonus mexicanus Hopkins (Coleóptera: Curculionidae: Scolytinae) atraídos a trampas en el noroeste de México y correlación con variables climáticas. Boletín del Mus Entomol la Univ del Val, 2012, 13: 12-19.

[9]

Dale VH, Joyce LA, Mcnulty S Climate change and forest disturbances. Bioscience, 2001, 51: 723.

[10]

Delgado L, Pedraza Perez RA. La madera muerta de los ecosistemas forestales. Foresta Veracruzana, 2002, 4: 59-66.

[11]

Evangelista PH, Kumar S, Stohlgren TJ, Young NE. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For Ecol Manag, 2011, 262: 307-316.

[12]

Gebhardt S, Wehrmann T, Ruiz M MAD-MEX: automatic wall-to-wall land cover monitoring for the Mexican REDD-MRV program using all landsat data. Remote Sens, 2014, 6: 3923-3943.

[13]

Gergel SE. Wulder MA, Franklin SE. New directions in landscape pattern analysis and linkages with remote sensing. Understanding forest disturbance and spatial pattern, 2007, Boca Raton: Taylor & Francis 173 208

[14]

Gernandt DS, Pérez-de la Rosa JA. Biodiversidad de Pinophyta (coníferas) en México. Rev Mex Biodivers, 2014, 85: 126-133.

[15]

Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Model, 2000, 135: 147-186.

[16]

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25: 1965-1978.

[17]

INEGI (2008) Conjunto de datos vectoriales de la carta de uso del suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Aguascalientes, Ags., México

[18]

INEGI (2015) Conjunto de datos vectoriales de la carta de uso del suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Aguascalientes, Ags., México

[19]

IPCC (2014) Intergovernmental panel on climate change. Climate change 2014 synthesis report

[20]

Knievel JC, Bryan GH, Hacker JP. Explicit numerical diffusion in the WRF model. Mon Weather Rev, 2007, 135: 3808-3824.

[21]

Lu Heli, Wang Xi, Zhang Yan, Yan Weiyang, Zhang Jinping. Modelling Forest Fragmentation and Carbon Emissions for REDD plus. Procedia Engineering, 2012, 37: 333-338.

[22]

Manzo-Delgado L, López-García J, Alcántara-Ayala I. Role of forest conservation in lessening land degradation in a temperate region: the Monarch Butterfly Biosphere Reserve, Mexico. J Environ Manag, 2014, 138: 55-66.

[23]

Matthews SN, Iverson LR, Peters MP Assessing and comparing risk to climate changes among forested locations: implications for ecosystem services. Landsc Ecol, 2013, 29: 213-228.

[24]

Meggs JM, Munks SA, Corkrey R, Richards K. Development and evaluation of predictive habitat models to assist the conservation planning of a threatened lucanid beetle, Hoplogonus simsoni, in north-east Tasmania. Biol Conserv, 2004, 118: 501-511.

[25]

Mitton JB, Sturgeon KB. Bark beetles in North American conifers: a system for the study of evolutionary biology, 1982, Austin: University of Texas Press.

[26]

Moreno-Sanchez R, Torres-Rojo JM, Moreno-Sanchez F National assessment of the fragmentation, accessibility and anthropogenic pressure on the forests in Mexico. J For Res, 2012, 23: 529-541.

[27]

Moser J, Fitzgibbon B, Klepzig K. Mexican pine beetle, Dendroctonus mexicanus: first record in the United States and co-occurrence with the southern pine beetle-Dendroctonus frontalis (Coleoptera). Entomol News, 2005, 116: 235-243.

[28]

Paquit JC, Pampolina NM, Tiburan CL, Manalo MMQ. Maxent modeling of the habitat distribution of the critically endangered Pterocarpus indicus Willd. forma indicus In Mindanao, Philippines. J Biodivers Environ Sci, 2017, 10: 2222-3045.

[29]

Hijmans Robert J., Cameron Susan E., Parra Juan L., Jones Peter G., Jarvis Andy. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25(15): 1965-1978.

[30]

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model, 2006, 190: 231-259.

[31]

Ray D, Behera MD, Jacob J. Evaluating ecological niche models: a comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc Natl Acad Sci India Sect B Biol Sci, 2017

[32]

Rzedowski J (2006) Vegetacion de Mexico, 1era Edici. Comision Nacional para el Uso y Conocimiento de la Biodiversidad

[33]

Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. For Ecol Manag, 2012, 275: 98-106.

[34]

Saldaña TJ (1989) Evaluación de tres insecticidas en la prevención de ataques de Dendroctonus mexicanus Hopkins (Coleóptera; Scolytidae) en Pinus leiophylla Schiede & Deppe. Universidad Autonoma Chapingo

[35]

Salinas-Moreno Y, Guadalupe Mendoza M, Barrios MA Areography of the genus Dendroctonus (Coleoptera: Curculionidae: Scolytinae) in Mexico. J Biogeogr, 2004, 31: 1163-1177.

[36]

Salinas-Moreno Y, Ager A, Vargas CF Determining the vulnerability of Mexican pine forests to bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). For Ecol Manag, 2010, 260: 52-61.

[37]

Sánchez-Martínez G, Wagner MR. Host preference and attack pattern of Dendroctonus rhizophagus (Coleoptera: Curculionidae: Scolytinae): a bark beetle specialist on pine regeneration. Environ Entomol, 2009, 38: 1197-1204.

[38]

SEMARNAT. Visión de México sobre REDD+, 2010, Mexico: Hacia un estrategia nacional.

[39]

Smith SE, Mendoza MG, Zúñiga G Predicting the distribution of a novel bark beetle and its pine hosts under future climate conditions. Agric For Entomol, 2013, 15: 212-226.

[40]

van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen records to develop accurate species distribution models. Ecography, 2016, 39: 542-552.

[41]

West AM, Kumar S, Brown CS Field validation of an invasive species Maxent model. Ecol Inform, 2016, 36: 126-134.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/