Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools
Antonio González-Hernández , Rene Morales-Villafaña , Martin Enrique Romero-Sánchez , Brenda Islas-Trejo , Ramiro Pérez-Miranda
Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 649 -659.
Modelling potential distribution of a pine bark beetle in Mexican temperate forests using forecast data and spatial analysis tools
Accurate and reliable predictions of pest species distributions in forest ecosystems are urgently needed by forest managers to develop management plans and monitor new areas of potential establishment. Presence-only species distribution models are commonly used in these evaluations. The maximum entropy algorithm (MaxEnt) has gained popularity for modelling species distribution. Here, MaxEnt was used to model the spatial distribution of the Mexican pine bark beetle (Dendroctonus mexicanus) in a daily fashion by using forecast data from the Weather Research and Forecasting model. This study aimed to exploit freely available geographic and environmental data and software and thus provide a pathway to overcome the lack of costly data and technical guidance that are a challenge to implementing national monitoring and management strategies in developing countries. Our results showed overall agreement values between 60 and 87%. The results of this research can be used for D. mexicanus monitoring and management and may aid as a model to monitor similar species.
Spatial analysis / Dendroctonus mexicanus / Geodatabases / MaxEnt / Forest modelling
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Colditz RR, Maeda P, López G et al (2010) Classifying the land cover of Mexico in the framework of the North American Land Change Monitoring System. In: American Society for photogrammetry and remote sensing annual conference 2010: opportunities for emerging geospatial technologies, pp 106–113 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
INEGI (2008) Conjunto de datos vectoriales de la carta de uso del suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Aguascalientes, Ags., México |
| [18] |
INEGI (2015) Conjunto de datos vectoriales de la carta de uso del suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Aguascalientes, Ags., México |
| [19] |
IPCC (2014) Intergovernmental panel on climate change. Climate change 2014 synthesis report |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Rzedowski J (2006) Vegetacion de Mexico, 1era Edici. Comision Nacional para el Uso y Conocimiento de la Biodiversidad |
| [33] |
|
| [34] |
Saldaña TJ (1989) Evaluación de tres insecticidas en la prevención de ataques de Dendroctonus mexicanus Hopkins (Coleóptera; Scolytidae) en Pinus leiophylla Schiede & Deppe. Universidad Autonoma Chapingo |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
SEMARNAT. Visión de México sobre REDD+, 2010, Mexico: Hacia un estrategia nacional. |
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |