PDF
Abstract
The expansion of fast-growing tree plantations is a worldwide process, with consequences on soil fertility and soil carbon storage. Disparate results were found on the effects of afforestation with Eucalyptus on soil carbon and other nutrient contents. These discrepancies are usually caused by differences in climate, land use history, soil texture as well as by management related factors such as plantation age, number of rotations, method of establishment (plantation or coppice), harvest residue management and soil preparation. We studied the effect of plantation age, number of rotations, and method of establishment on soils and plant nutrient concentrations in Eucalyptus grandis plantations in NE Argentina on different textured soils. We also determined if yields changed with nutrient variations in soils, and compared soils under plantations to soils under grasslands they replaced. Thirty-one E. grandis stands of different ages, number of rotations and method of establishment were evaluated as well as eight grassland sites. Levels of carbon, nitrogen, phosphorus, potassium, calcium and magnesium were determined for soils and plants. Soil carbon and nitrogen decreased over the number of rotations and were more pronounced in soils with 50–60% sand than soils with > 75% sand. Coppice stands showed higher soil carbon and nitrogen levels than plantations, suggesting a negative effect of site preparation before planting on soil nutrient conservation, especially in fine-textured soils. Foliar nutrient concentrations did not follow the trends observed for soil nutrients nor did they reflect nutrient limitations. There was no evidence of decreased yields over successive rotations. Soil carbon and nitrogen contents decrease when grasslands are replaced by E. grandis plantations, and therefore a yield limitation may occur in a medium to long-term frame, especially in stands re-established for short-rotation management. Harvest residue management and site preparation must be specifically designed for improving soil nutrient management.
Keywords
Soil texture
/
Grasslands
/
Foliar nutrient concentrations
/
Successive harvest
/
Coppice
/
Eucalyptus grandis
Cite this article
Download citation ▾
Diego Martín Sandoval López, Marcelo Fabián Arturi, Juan Francisco Goya, Carolina Alejandra Pérez, Jorge Luis Frangi.
Eucalyptus grandis plantations: effects of management on soil carbon, nutrient contents and yields.
Journal of Forestry Research, 2018, 31(2): 601-611 DOI:10.1007/s11676-018-0850-z
| [1] |
Assmann E. The principles of forest yield study, 1970, New York: Pergamon Press.
|
| [2] |
Berthrong ST, Jobbagy EG, Jackson RB. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl, 2009, 19(8): 2228-2241.
|
| [3] |
Berthrong ST, Piñeiro G, Jobbágy EG, Jackson RB. Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol Appl, 2012, 22(1): 76-86.
|
| [4] |
Binkley D, Fisher R. Ecology and management of forest soils, 2013, UK: Wiley 362
|
| [5] |
Burke IC, Yonker CM, Parton WJ, Cole CV, Schimel DS, Flach K. Texture, climate, and cultivation effects on soil organic matter content in US grassland soils. Soil Sci Soc Am J, 1989, 53(3): 800-805.
|
| [6] |
Céspedes-Payret C, Piñeiro G, Gutiérrez O, Panario D. Land use change in a temperate grassland soil: afforestation effects on chemical properties and their ecological and mineralogical implications. Sci Total Environ, 2012, 438: 549-557.
|
| [7] |
Cochran WG. Sampling techniques, 1977 3 New York: Wiley.
|
| [8] |
Cook RL, Binkley D, Stape JL. Eucalyptus plantation effects on soil carbon after 20 years and three rotations in Brazil. For Ecol Manag, 2016, 359: 92-98.
|
| [9] |
Crechi EH, Fassola HE, Keller AE, Barth SR. Desarrollo de funciones de índice de sitio para Eucalyptus grandis cultivado en la Mesopotamia, Argentina. RIA, 2011, 37(3): 238-248.
|
| [10] |
Dalla Tea F, Marcó MA. Attiwill P, Adams M. Fertilizers and eucalypt plantations in Argentina. Nutrition of eucalypts, 1996, Clayton: CSIRO Publishing 327 333
|
| [11] |
Eclesia RP, Jobbágy EG, Jackson RB, Biganzoli F, Piñeiro G. Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Change Biol, 2012, 18(10): 3237-3251.
|
| [12] |
FAO (2006) [Food and Agriculture Organization of the United Nations]. Guidelines for soil description. 4th edn. http://www.fao.org/3/a-a0541e.pdf
|
| [13] |
Fialho RC, Zinn YL. Changes in soil organic carbon under eucalyptus plantations in Brazil: a comparative analysis. Land Degrad Dev, 2012, 25(5): 428-437.
|
| [14] |
Frangi J, Pérez C, Goya J, Tesón N, Barrera M, Arturi M. Modelo empírico integral de una plantación de Eucalyptus grandis en Concordia. Entre Ríos. BOSQUE, 2016, 37(1): 191-204.
|
| [15] |
García Préchac F, Pérez Bidegain M, Christie S, Santini P. Efecto de la intensidad de laboreo en el crecimiento aéreo y radicular de Eucalyptus dunnii y sobre algunas propiedades físicas y químicas del suelo. Agrociencia, 2001, 5(1): 1-9.
|
| [16] |
Garrán SM, Garín RO, Marcó MA. El clima de la Región de Concordia y sus heladas, 2007, Concordia: XXII Jornadas Forestales de Entre Ríos III-1 III-3
|
| [17] |
Gee GW, Bauder JW. Klute A. Particle-size analysis. Methods of soil analysis, Part 1. Physical and mineralogical methods-agronomy monograph no 9, 1986, Madison: American Society of Agronomy/Soil Science Society of America 383 411
|
| [18] |
Gonçalves JLM, Stape JL, Laclau J-P, Smethurst P, Gava JL. Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manag, 2004, 193: 45-61.
|
| [19] |
Goya JF, Frangi JL, Dalla Tea F, Marcó MA, Larocca F. Biomasa, productividad y contenido de nutrientes en plantaciones de Eucalyptus grandis en el NE de la provincia de Entre Ríos, 1997, Concordia: XII Jornadas Forestales de Entre Ríos III-1 III-19
|
| [20] |
Goya JF, Frangi JL, Pérez CA, Dalla Tea F. Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Bosque, 2008, 29(3): 217-226.
|
| [21] |
Goya JF, Frangi JL, Denegri G, Larocca F. Simulación del impacto de diferentes regímenes de cosecha sobre el capital de nutrientes e indicadores económicos en plantaciones de Eucalyptus grandis del NE de Entre Ríos, Argentina. AUGMDomus, 2009, 1: 1-17.
|
| [22] |
Goya JF, Arturi M, Sandoval DM, Pérez CA, Frangi JL. Efecto de las plantaciones de Eucalyptus grandis sobre el contenido de N del suelo en el NE de Entre Ríos, 2013, Puerto Iguazú: IV Congreso Forestal Argentino y Latinoamericano.
|
| [23] |
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. How strongly can forest management influence soil carbon sequestration?. Geoderma, 2007, 137(3): 253-268.
|
| [24] |
Jobbágy EG, Jackson RB. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry, 2001, 53: 51-77.
|
| [25] |
Jobbágy EG, Jackson RB. The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology, 2004, 85(9): 2380-2389.
|
| [26] |
Jobbágy EG, Vasallo M, Farley KA, Piñeiro G, Garbulsky MF, Nosetto MD, Jackson RB, Paruelo JM. Forestación en pastizales: hacia una visión integral de sus oportunidades y costos ecológicos. Agrociencia, 2006, 10(2): 109-124.
|
| [27] |
Kimmins JP. Forest ecology: a foundation for sustainable development, 1997, Upper Saddle River: Prentice-Hall Inc.
|
| [28] |
Laclau JP, Ranger J, Gonçalves JLM, Maquere V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-Andre L, Bouillet J-P, Piccolo MC, Deleporte P. Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag, 2010, 259(9): 1771-1785.
|
| [29] |
Laganière J, Angers DA, Pare D. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol, 2010, 16(1): 439-453.
|
| [30] |
Li X, Ye D, Liang H, Zhu H, Qin L, Zhu Y, Qin L, Zhu Y, Wen Y. Effects of successive rotation regimes on carbon stocks in Eucalyptus plantations in subtropical China measured over a full rotation. PLoS ONE, 2015 10 7 e0132858
|
| [31] |
McGroddy ME, Daufresne T, Hedin LO. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology, 2004, 85(9): 2390-2401.
|
| [32] |
Mendham DS, Heagney EC, Corbeels M, O’Connell AM, Grove TS, McMurtrie RE. Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus. Soil Biol Biochem, 2004, 36(7): 1067-1074.
|
| [33] |
Ministerio de Agroindustria de la Nación (2017) Mapa de Plantaciones Forestales (MPF) de la República Argentina. http://ide.agroindustria.gob.ar/visor/
|
| [34] |
Mundry R, Nunn CL. Stepwise model fitting and statistical inference: turning noise into signal pollution. Am Nat, 2009, 173(1): 119-123.
|
| [35] |
Oades JM. The retention of organic matter in soils. Biogeochemistry, 1988, 5(1): 35-70.
|
| [36] |
Pérez CA, Frangi JL, Goya JF, Luy AM, Arturi MF. Contenido de nutrientes en las raíces finas y el mantillo de rodales de Eucalyptus grandis de diferente edad en la Mesopotamia, Argentina. Bosque, 2013, 34(3): 303-310.
|
| [37] |
R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org
|
| [38] |
Sala OE, Parton WJ, Joyce LA, Lauenroth WK. Primary production of the central grassland region of the United States: spatial pattern and major controls. Ecology, 1988, 69: 40-45.
|
| [39] |
Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil, 2002, 241(2): 155-176.
|
| [40] |
Tabatabai MA, Bremner JM. Smith KA. Automated instruments for determination of total carbon, nitrogen, and sulfur in soils by combustion techniques. Soil analysis modem instrumental techniques, 1991 2 New York: Marcel Dekker 261 286
|
| [41] |
Tasi HAA (2009) Aplicación de las Cartas de Suelos de Entre Ríos, Argentina, para evaluar índices de productividad específicos para los principales cultivos agrícolas. PhD thesis, Universidad de La Coruña, La Coruña, España
|
| [42] |
Temesgen D, Gonzálo J, Turrión MB. Effects of short-rotation Eucalyptus plantations on soil quality attributes in highly acidic soils of the central highlands of Ethiopia. Soil Use Manag, 2016, 2: 210-219.
|
| [43] |
Thornley JHM, Cannell MGR. Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol, 2000, 20: 477-484.
|
| [44] |
Wan X, Xiao L, Vadeboncoeur MA, Johnson CE, Huang Z. Response of mineral soil carbon storage to harvest residue retention depends on soil texture: a meta-analysis. For Ecol Manag, 2018, 408(2018): 9-15.
|
| [45] |
West B, Welch KB, Galecki AT. Linear mixed models: a practical guide using statistical software, 2014, Boca Raton: Chapman & Hall
|
| [46] |
Zinn YL, Siqueira Resck DV, da Silva JE. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. For Ecol Manag, 2002, 166(1): 285-294.
|
| [47] |
Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol, 2010, 1: 3-14.
|