Floristic diversity and carbon stocks in the periphery of Deng–Deng National Park, Eastern Cameroon

Louis Paul Roger Kabelong Banoho , Louis Zapfack , Robert Bertrand Weladji , Cedric Chimi Djomo , Melanie Chichi Nyako , Yannick Enock Bocko , Damien Marie Essono , Julliete Mancho Nasang , Nadège Madountsap Tagnang , Charles Innocent Memvi Abessolo , Kenneth Roger Mvondo Sakouma , Farikou Mamadou Souahibou , Florence Jeanne Sarah Palla , Tonga Ketchatang Peguy , Remi Jiagho , Thierry Loic Kenmou , Ulrich Arnaud Choumele Kana Jumo , Boris Armel Anyam Yi Andjik , Roger Bruno Tabue Mbobda

Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (3) : 989 -1003.

PDF
Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (3) : 989 -1003. DOI: 10.1007/s11676-018-0839-7
Original Paper

Floristic diversity and carbon stocks in the periphery of Deng–Deng National Park, Eastern Cameroon

Author information +
History +
PDF

Abstract

Carbon is continuously being removed from the atmosphere by photosynthesis and stored in carbon pools (live, dead, and soil carbon) of forest ecosystems. However, carbon stock in dead wood and of trees with diameters at breast height (dbh) between 5 and 10 cm is often not considered in many studies carried out in the Congo Basin Forest. The relationship between tree diversity, life-forms and carbon stocks has received little attention. This study was carried out on the outskirts of Deng Deng National Park (DDNP) to determine tree diversity (dominant families, species richness and Shannon index), assess carbon stocks in the five carbon compartments (living tree, understory, fine roots, dead wood and litter) as well as to analyze the relationship between (1) carbon stocks and tree diversity; and, (2) between carbon stock and life-forms. The Shannon index of trees ≥ 10 cm dbh ranged from 2.6 in riparian forest to 4.3 in secondary forest; and for the tree between 5 and 10 cm, it ranged to 1.56 in riparian forest to 3.68 in the secondary forest. The study site housed 16 species, 7 genera and 3 families which are only found in trees of dbh between 5 and 10 cm. The average total carbon stock of the five compartments varied from 200.1 t ha−1 in forest residues to 439.1 t ha−1 in secondary forest. Dead wood carbon stock varied from 1.2 t ha−1 in riparian forests to 12.51t ha−1 in agroforests. The above ground carbon stocks for trees with diameter between 5 and 10 cm varied from 0.7 t ha−1 in young fallow fields to 5.02 t ha−1 in old secondary forests. This study reveals a low but positive correlation between species richness and total carbon stocks, as well as a significant positive relationship between life-forms and total carbon stocks. The findings highlight the need for more data concerning carbon content of dead wood, carbon of trees ≥ 5 cm < 10 cm dbh and the relationship between carbon stocks and tree diversity from other areas of the Congo Basin for a good understanding of the contribution of tropical forests to climate change mitigation.

Keywords

Deng Deng national park / Carbon stocks / Land cover types / Species diversity / Dead wood

Cite this article

Download citation ▾
Louis Paul Roger Kabelong Banoho, Louis Zapfack, Robert Bertrand Weladji, Cedric Chimi Djomo, Melanie Chichi Nyako, Yannick Enock Bocko, Damien Marie Essono, Julliete Mancho Nasang, Nadège Madountsap Tagnang, Charles Innocent Memvi Abessolo, Kenneth Roger Mvondo Sakouma, Farikou Mamadou Souahibou, Florence Jeanne Sarah Palla, Tonga Ketchatang Peguy, Remi Jiagho, Thierry Loic Kenmou, Ulrich Arnaud Choumele Kana Jumo, Boris Armel Anyam Yi Andjik, Roger Bruno Tabue Mbobda. Floristic diversity and carbon stocks in the periphery of Deng–Deng National Park, Eastern Cameroon. Journal of Forestry Research, 2018, 31(3): 989-1003 DOI:10.1007/s11676-018-0839-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angelsen A, Brockhaus M, Sunderlin WD, Verchot LV. Analyse de la REDD + : les enjeux et les choix, 2013, Bogor: Center for International Forestry Research 520

[2]

Asase A, Tetteh DK. The role of complex agroforestry systems in the conservation of forest tree diversity and structure in southeastern Ghana. Agrofor Syst, 2010, 79(3): 355-368.

[3]

Asase A, Asitoakor BK, Ekpe PK. Linkages between tree diversity and carbon stocks in unlogged and logged West African tropical forests. Int J Biodivers Sci, Ecosyst Ser Manag, 2012, 8(3): 217-230.

[4]

Bocko YE, Ifo SA, Loumeto JJ. Quantification Des Stocks De Carbone De Trois Pools Clés De Carbone En Afrique Centrale: Cas De La Forêt Marécageuse De La Likouala (Nord Congo). Eur Sci J, 2017, 13(5): 438-459.

[5]

Branthomme A, Altrell D, Kamelarczyk K, Saket M. Suivi et évaluation des ressources forestières nationales: Manuel pour le relevé intégré de données sur le terrain, 2009, Rome: Food and Agriculture Organization 201

[6]

Brown S, Gilespie AJR, Lugo AE. Biomass estimation methods for tropical forest with application to forest inventory data. For Sci, 1989, 35: 881-902.

[7]

Bunker DE, Declerk F, Bradford JC, Colwell RK, Perfecto Y, Phillips OL, Sankaran M, Naeem S. Species loss and above-ground carbon storage in a tropical forest. Science, 2005, 310(5750): 1029-1031.

[8]

Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci (USA), 2007, 104: 18123-18128.

[9]

Catovsky S, Kobe RK, Bazzaz FA. Nitrogen-induced changes in seedling regeneration and dynamics of mixed conifer-broad-leaved forests. Ecol Appl, 2002, 12: 1611-1625.

[10]

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145(1): 87-99.

[11]

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan M, Delitti W, Duque A, Eid T, Fearnside P, Goodman R Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biol, 2014, 20: 3177-3190.

[12]

Cottam G, Curtis JT. The use of distance measures in phytosociological sampling. Ecology, 1956, 37: 451-460.

[13]

Day M, Baldauf C, Rutishauser E, Sunderland TCH. Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. Environ Conserv, 2013, 41(1): 64-72.

[14]

Denslow JS. Tropical rainforest gaps and tree species diversity. Ann Rev Ecol Syst, 1987, 18: 431-451.

[15]

Diaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M. Incorporating plant functional diversity effects in ecosystem service assessments. PNAS, 2007, 104(52): 20684-20689.

[16]

Djomo AN, Knohl A, Gravenhorst G. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. For Ecol Manag, 2011, 261(8): 1448-1459.

[17]

Djuikouo MNK, Doucet J-L, Nguembou CK, Lewis SL, Sonké B. Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. Afr J Ecol, 2010, 48: 1053-1063.

[18]

Doumenge C, Yuste JEG, Gartlan S, Langrand O, Ndinga A. Conservation de la biodiversité forestière en Afrique centrale atlantique : le réseau d’aires protégées est-il adéquat ?. Bois et Forêts des Tropiques, 2001, 268(2): 5-28.

[19]

Doumenge C, Ndinga A, Fomete Nembot TZT, Ona Nze V, Ngoye HBBA. Conservation de la biodiversité forestière en Afrique centrale atlantique II. Identification d’un réseau de sites critiques. Bois et Forêts des Tropiques, 2003, 276(2): 43-58.

[20]

Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manag, 2013, 305: 29-37.

[21]

Fayolle A, Loubota-Panzou GJ, Drouet T, Swaine MD, Bauwens S, Vleminckx J, Biwole A, Lejeune P, Doucet JL. Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. For Ecol Manag, 2016, 374: 42-50.

[22]

Feldpausch TR, Jirka S, Passos CAM, Jasper F, Riha SJ. When big trees fall: damage and carbon export by reduced impact logging in southern Amazonia. For Ecol Manag, 2005, 219: 199-215.

[23]

Fornara DA, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol, 2008, 96(2): 314-322.

[24]

Gonmadje CF, Doumenge C, Doyle McKey Tchouto GPM, Sunderland TCH, Balinga PB, Sonké B. Tree diversity and conservation value of Ngovayang’s lowland forests, Cameroon. Biodivers Conserv, 2011, 20(12): 2627-2648.

[25]

Gourlet-Fleury S, Rossi V, Rejou-Mechain M, Freycon V, Fayolle A, Saint-Andre L, Cornu G, Gérard J, Sarrailh J-M, Flores O, Baya F, Billand A, Fauvet N, Gally M, Henry M, Hubert D, Pasquier A, Picard N. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. J Ecol, 2011, 99: 981-990.

[26]

Hawthorne WD, Abu-Juam M. Forest protection in Ghana: with particular reference to vegetation and plant species, 1995, Gland: International Union for Conservation of Nature 202

[27]

Houle G. Determinants of fine-scale plant species richness in a deciduous forest of northeastern North America. J Veg Sci, 2007, 18: 345-354.

[28]

Ifo AS. Apport de carbone au sol et stock dans deux types forestiers (forêt galerie et forêt secondaire) des plateaux tékés, 2010, Brazzaville: Thèse, Université-Marien-NGouabi 194

[29]

Ifo AS, Koubouana F, Jourdain C, Nganga D. Stock and flow of carbon in plant woody debris in two different types of natural forests in Bateke Plateau, Central Africa. Open J For, 2015, 5: 38-47.

[30]

Ifo SA, Mbemba M, Koubouana F, Binsangou S. Stock de carbone dans les gros débris ligneux végétaux : cas des forêts tropicales pluvieuses de la Likouala, République du Congo. Eur Sci J, 2017, 13(12): 384-399.

[31]

IPCC. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, 2013, New York: Cambridge University Press 1535

[32]

IUCN/WCMC. Guidelines for protected area management categories, 1994, Gland: IUCN 261

[33]

Jiagho ER, Zapfack L, Kabelong Banoho LPR, Tsayem-Demaze M, Corbonnois J, Tchawa P. Diversité de la flore ligneuse à la périphérie du Parc national de Waza (Cameroun). VertigO, 2016

[34]

Kent M, Coker P. Vegetation description and analysis, 1992, London: Belhaven Press 363

[35]

Kirby KR, Potvin C. Variation in carbon storage among tree species: implications for the management of a small scale carbon sink project. For Ecol Manag, 2007, 246(2–3): 208-221.

[36]

Kueppers LM, Southon J, Baer P, Harte J. Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 2004, 141: 641-651.

[37]

Leroux M. ‘‘Global warming’’: mythe ou réalité? L’évolution réelle de la dynamique du temps. Annales de géographie, 2002, 111(624): 115-137.

[38]

Lescuyer G, Locatelli B. Rôle et valeur des forêts tropicales dans le changement climatique. Bois et forêts des tropiques, 1999, 260(2): 5-17.

[39]

Lewis SL, Sonke B, Sunderland T, Begne SK, Lopez-Gonzalez G, van der Heijden GMF, Phillips OL, Affum-Baffoe K, Baker TR, Banin L, Bastin JFB, Beeckman H, Boeckx P, Bogaert J, De Cannière C, Chezeaux E, Clark CJ, Collins M, Djagbletey G, Djuikouo MNK, Droissart V, Doucet JL, Ewango CEN, Fauset S, Feldpausch TR, Foli EG, Gillet JF, Hamilton AC, Harris DJ, Hart TB, Haulleville T, Hladik A, Hufkens K, Huygens D, Jeanmart P, Jeffery KJ, Kearsley E, Leal ME, Lloyd J, Lovett JC, Makana JR, Malhi Y, Marshall AR, Ojo L, Peh KS-H, Pickavance G, Poulsen JR, Reitsma JM, Sheil D, Simo M, Steppe K, Taedoum HE, Talbot J, Taplin JRD, Taylor D, Thomas SC, Toirambe B, Verbeeck H, Vleminckx J, White LJT, Willcock S, Woell H, Zemagho L. Above-ground biomass and structure of 260 African tropical forests. Phil Trans R Soc B, 2013

[40]

Loubota-Panzou GJ, Doucet JL, Loumeto JJ, Biwole A, Bauwens S, Fayolle A. Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique). Biotechnol Agron Soc Environ, 2016, 20(4): 508-522.

[41]

MacNally R, Parkinson A, Horrocks G, Conole L, Tzaros C. Relationships between terrestrial vertebrate diversity, abundance and avaiability of coarse woody debris on south-eastern Australian floodplains. Biol Conserv, 2001, 99: 191-205.

[42]

Maniatis D, Malhi Y, Saint Andre L, Mollicone D, Barbier N, Saatchi S, Henry M, Tellier L, Schwartzenberg M, White L. Evaluating the potential of commercial forest inventory data to report on the forest carbon stock and forest carbon stock changes for REDD under the UNFCCC. Int J For Res, 2011

[43]

Merganicova K, Merganic J. Coarse woody debris carbon stocks in natural spruce forests of Babia hora. J For Sci, 2010, 56(9): 397-405.

[44]

Midgley GF, Bond WJ, Kapos VK, Ravilious C, Scharlemann JPW, Woodward FI. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr Opin Environ Sustain, 2010, 2: 264-270.

[45]

Miles L, Dickson B. REDD-plus and biodiversity: opportunities and challenges. Unasylsva, 2010, 61: 56-63.

[46]

Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol, 2006, 12: 84-96.

[47]

Mund M (2004) Carbon Pools of European beech forests (Fagus sylvatica) under different silvicultural management. Thesis, Der Georg-August-Universität Göttingen: Göttingen, p 268

[48]

Nakakaawa C, Aune J, Vedeld P. Changes in carbon stocks and tree diversity in agro-ecosystems in south western Uganda: what role for carbon sequestration payments?. N For, 2009, 40: 19-44.

[49]

Ngo KM, Turner BL, Muller-Landau HL, Davies SJ, Larjavaara M, Hassan NFN, Lumd S. Carbon stocks in primary and secondary tropical forests in Singapore. For Ecol Manag, 2013, 296: 81-89.

[50]

Ngomanda A, Obiang ELN, Lebamba J, Mavouroulou MQ, Gomat H, Mankou SG, Loumeto J, Iponga MD, Ditsouga KF, Koumba ZR, Bobé BHK, Okouyi MC, Nyangadouma R, Lépengué N, Mbatchi B, Picard N. Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest?. For Ecol Manag, 2014, 312: 1-9.

[51]

Nordén B, Paltto H. Wood-decay fungi in hazel wood: species richness correlated to stand age and dead wood features. Biol Consev, 2001, 101: 1-8.

[52]

Palace M, Keller M, Asner GP, Silva JNM, Passos C. Necromass in undisturbed and logged forests in the Brazilian Amazon. For Ecol Manag, 2007, 238: 309-318.

[53]

Pascal JP. Description et dynamique des milieux forestiers: notions sur les structures et dynamiques des forêts tropicales humides. Rev For Fr, 2003, 55: 118-130.

[54]

Pfeifer M, Lefebvre V, Turner E, Cusack J, Khoo M, Chey VK, Peni M, Ewers RM. Dead wood biomass: an underestimated carbon stock in degraded tropical forests?. Environ Res Lett, 2015

[55]

Rice A, Pyle E, Saleska S. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecol Appl, 2004, 14: 55-71.

[56]

Ruiz-Jaen MC, Potvin C. Tree diversity explained patterns of variation in ecosystem function in a Neotropical forest. Biotropica, 2010, 42(6): 638-646.

[57]

Woldendorp G, Keenan RJ and Ryan, MF (2002) An Analysis of sampling methods for coarse woody Debris in Australian forest ecosystems a report for the national greenhouse strategy, Module 6.6 (Criteria and Indicators of Sustainable Forest Management). Australia: Commonwealth of Australia, p 75

[58]

Sagar R, Singh JS. Tree density, basal area and species diversity in a disturbed dry tropical forest of northern India: implications for conservation. Environ Conserv, 2006, 33: 256-262.

[59]

Schnell R. La phytogéographie des pays tropicaux: les milieux-les groupements végétaux. CNRS. Gauthier-villars. Paris, 1971, 2: 503-951.

[60]

Shannon CE, Weaver W. The mathematical theory of communication, 1949, Urbana: University of Illinois Press 131

[61]

Sist P, Ferreira FN. Sustainability of reduced-impact logging in the Eastern Amazon. For Ecol Manag, 2007, 243(2–3): 199-209.

[62]

Slik JWF, Paoli G, McGuire KL, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark CJ, Collins M, Dauby G, Yi Ding Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martin E, Miyamoto K, Araujo-Murakami A, Nagamasu H, Nilus R, Nurtjahya E, Oliveira A, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Ramirez-Angulo JR, Poulsen H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, Ter Steege H, Stévart T, Navarro-Aguilar GE, Sunderland TCH, Suzuki E, Tang J, Theilade I, Van Der Heijden G, Van Valkenburg J, Van Tran D, Vilanova E, Vos V, Wich S, Wöll H, Yoneda T, Zang R, Ming-Gang Zhang, Zweifel N. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr, 2013, 22(12): 1261-1271.

[63]

Sonké B (1998) Etude floristiques et structurales des forêts dans la Réserve de Faune du Dja (Cameroun). Thèse de Doctorat, Université libre de Bruxelles, p 288

[64]

Sonké B (2004) Appendix E biological environment of the Nkamouna Site. Biodiversity—Flora. Rapport d’étude d’impact Environnemental et social. Yaounde: Cameroun, Rainbow Environment Consult (REC), p 37

[65]

Sonké B, Couvreur TLP. Tree diversity of the Dja Faunal Reserve, southeastern Cameroon. Biodivers Data J, 2014

[66]

Tabue Mbobda RB, Zapfack L, Noiha Noumi V, Nyeck B, Meyan-Ya Daghela RG, Ngoma LR, Kabelong Banoho LP, Chimi Djomo C. Plant diversity and carbon storage assessment in an African protected forest: a case of the Eastern part of the Dja wildlife reserve in Cameroon. J Plant Sci, 2016, 4(5): 95-101.

[67]

Tchouto MGP, De Boer WF, De Wilde JJFE, Van Der Maesen LJG. Diversity patterns in the flora of the Campo-Ma’an rain forest, Cameroon: do tree species tell it all?. Biodivers Conserv, 2006, 15: 353-1374.

[68]

Ter Steege H, Pitman N, Sabatier D A spatial model of tree α-diversity and tree density for the Amazon. Biodivers Conserv, 2003, 12: 2255-2277.

[69]

Thompson ID, Okabe K, Tylianakis JM, Kumar P, Brockerhoff EG, Schellhorn NA, Parrotta JA, Nasi R. Forest biodiversity and the delivery of ecosystem goods and services: translating science into policy. Bioscience, 2011, 61(12): 972-981.

[70]

Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277: 1300-1302.

[71]

Vivien J, Faure JJ. Arbres des forêts denses d’Afrique centrale, 2011, Ediprint: France.

[72]

Vogt KA. Carbon budgets of temperate forest ecosystems. Tree Phys, 1991, 9: 69-86.

[73]

Walker S, Pearson T, Harris N, Sean G, Silvia P, Felipe C, Sandra B. Procédures Opérationnelles Standards pour la Mesure du Carbone Terrestre, 2011, USA: Winrock Int 76

[74]

Warren W, Olsen P. A line intersect technique for assessing logging waste. For Sci, 1964, 10: 267-276.

[75]

Zapfack L, Noiha Noumi V, Dziedjou Kwouossu PJ, Zemagho L, Fomete Nembot T. Deforestation and carbon stocks in the surroundings of Lobéké National Park (Cameroon) in the Congo Basin. Environ Nat Resour Res, 2013, 3(2): 78-86.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/