Ecophysiological aspects of in vitro biotechnological studies using somatic embryogenesis of callus tissue toward protecting forest ecosystems

Katarzyna Nawrot-Chorabik , Marcin Pietrzykowski

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1159 -1166.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1159 -1166. DOI: 10.1007/s11676-018-0835-y
Review Article

Ecophysiological aspects of in vitro biotechnological studies using somatic embryogenesis of callus tissue toward protecting forest ecosystems

Author information +
History +
PDF

Abstract

This review on current biotechnological methods in forestry for in vitro tissue cultures to define the effect of stress conditions on trees, concentrates on somatic embryogenesis. Callus tissue, the key product of somatic embryogenesis, grows over a tree wound under ex vitro conditions. Callus tissue can be used in research in areas such as pathogenic susceptibility at the embryonic level, effect of heavy metals, influence of low temperatures (cryopreservation), production of secondary metabolites and transformation of plants. Callus of arborescent plants can be induced in vitro by fungal elicitors to produce secondary metabolites for pharmaceutical and cosmetic industries and are strongly repellant to herbivores and can thus act to protect forests. Analyses of dual cultures demonstrated that callus tissue exposed to a pathogenic fungus responds by synthesizing low-molecular-mass proteins belonging to an immune protein class. Cryopreservation of embryonic callus tissue also has broad applications, e.g., for valuable plant genotypes in gene banks. Without strategies to protect forests against stress factors, forest ecosystems will degrade to the detriment of all life, including humans. In vitro biotechnological research using callus tissue contributes to progress in forestry and the disciplines of ecology, physiology, phytopathology, culture and selection of plants.

Keywords

Callus / Environmental stress / Micropropagation / Tissue cultures / Trees

Cite this article

Download citation ▾
Katarzyna Nawrot-Chorabik, Marcin Pietrzykowski. Ecophysiological aspects of in vitro biotechnological studies using somatic embryogenesis of callus tissue toward protecting forest ecosystems. Journal of Forestry Research, 2019, 30(4): 1159-1166 DOI:10.1007/s11676-018-0835-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abul-Soad AA, Mahdi SM. Commercial production of tissue culture date palm (Phoenix dactylifera L.) by inflorescence technique. J Genet Eng Biotechnol, 2010, 8: 39-44.

[2]

Agrawal V, Sharma K. Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica. Biol Plant, 2006, 50: 307-310.

[3]

Berjak P, Pammenter NW. Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci, 2013, 4: 1-9.

[4]

Bołonkowska O, Pietrosiuk A, Sykłowska-Baranek K. Plant dyes, their biological properties and possibilities of their production in in vitro cultures. Bull Fac Pharm Med Univ Wars, 2011, 1: 1-27.

[5]

Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci, 2001, 161: 839-851.

[6]

Chalupa V. Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun Inst For Czech Repub, 1985, 14: 57-63.

[7]

Corredoira E, Balleste A, Vieitez AM. Proliferation, maturation and germination of Castanea sativa Mill. Somatic embryos originated from leaf explants. Ann Bot, 2003, 92: 129-136.

[8]

Cusidó RM, Palazón J, Navia-Osorio A, Mallol A, Bonfill M, Morales C, Piñol MT. Production of Taxol and baccatin III by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Sci, 1999, 146: 101-107.

[9]

Cyr DR, Klimaszewska K. Conifer somatic embryogenesis: II. Applications. Dendrobiology, 2002, 48: 41-49.

[10]

Das K, Dang R, Ghanshala N, Rajasekharan PE. In vitro establishment and maintenance of callus of Taxus wallichiana Zucc. for the production of secondary metabolites. Nat Prod Radiance, 2008, 7: 150-153.

[11]

Dörnenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enz Microb Technol, 1995, 17: 674-684.

[12]

Ďurkovič J, Mišalová A. Micropropagation of temperate noble hardwoods: an overview. Funct Plant Sci Biotechnol, 2008, 2: 1-9.

[13]

Giri CC, Shyamkumar B, Anjaneyulu C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees, 2004, 18: 115-135.

[14]

Hakman I, Fowke LC, Von Arnold S, Eriksson T. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci, 1985, 38: 53-59.

[15]

Hargreaves C, Menzies M. Jain SM, Häggman H. Organogenesis and cryopreservation of juvenile radiata pine. Protocols for micropropagation of woody trees and fruits, 2007, Berlin: Springer 51 66

[16]

Hazubska-Przybył T, Chmielarz P, Michalak M, Bojarczuk K. Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tissue Org Cult, 2010, 102: 35-44.

[17]

Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M, Bojarczuk K. Vitrification metod of ambryogenic tissues of spruce trees (Picea spp.). Biotechnologia, 2012, 93: 242.

[18]

Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M, Bojarczuk K. Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowthdehydration method. Plant Cell Tissue Org Cult, 2013, 113: 303-313.

[19]

Heinze B, Schmidt J. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica, 1995, 85: 341-345.

[20]

Hendry SJ, Boddy L, Lonsdale D. Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytol, 1993, 123: 421-428.

[21]

Herdt RW. Biotechnology in agriculture. Annu Rev Biochem, 2006, 31: 265-295.

[22]

Klimaszewska K, Park YS, Overton C, Maceacheron I, Bonga JM. Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant, 2001, 37: 392-399.

[23]

Klimaszewska K, Overton C, Stewart D, Rutledge RG. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta, 2010, 233: 635-647.

[24]

Komaraiah P, Amrutha RN, Kavi Kishor PB, Rhamakrishna SV. Elicitor enhanced production of plumbagin in suspension cultures of Plumbagino rosea L. Enzyme Microb Technol, 2002, 31: 634-639.

[25]

Kowalski T, Kehr RD. Endophytic fungal colonization of branch bases in several forest tree species. Sydowia, 1992, 44: 137-168.

[26]

Kraj W, Dolnicki A, Nawrot-Chorabik K. Sterilisation of the explants from beech (Fagus sylvatica L.) for the in vitro cultures. Biol (Bratislava) Sect Bot, 1999 54 7 33

[27]

Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K. Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Org Cult, 2008, 92: 31-45.

[28]

Litz RE, Moon PA, Chavez VM. Somatic embryogenesis from leaf callus derived from mature trees of the cycad Ceratozamia hildae (Gymnospermae). Plant Cell Tissue Org Cult, 1995, 40: 25-31.

[29]

Malá J, Máchová P, Cvrčková H, Čížková L. Use of micropropagation for gene resources reproduction of noble deciduous species (Malus sylvestris, Pyrus pyraster, Sorbus torminalis, S. aucuparia and Prunus avium). Rep For Res, 2005, 50: 219-224. (in Czech)

[30]

Malá J, Cvikrová M, Chalupa V. Jain SM, Häggman H. Micropropagation of mature trees of Ulmus glabra, Ulmus minor and Ulmus laevis. Protocols for micropropagation of woody trees and fruits, 2007, Berlin: Springer 237 248

[31]

McCown BH. Biotechnology in horticulture: 100 years of application. Hort Sci, 2003, 38: 1026-1030.

[32]

Mihaljevic S, Jelaska S. Jain SM, Gupta P. Omorica spruce (Picea omorica). Protocol for somatic embryogenesis in woody plants. Forestry sciences, 2005, Berlin: Springer 35 46

[33]

Misson JP, Druart P, Panis B, Watillon B. Contribution to the study of the maintenance of somatic embryos of Abies nardmaniana Lk: culture media and cryopreservation method. Prop Ornam Plants, 2006, 6: 17-23.

[34]

Mulabagal V, Tsay HS. Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng, 2004, 2: 29-48.

[35]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-494.

[36]

Naujoks G. Jain SM, Häggman H. Micropropagation of Salix caprea L.. Protocols for micropropagation of woody trees and fruits, 2007, Berlin: Springer 213 220

[37]

Nawrot-Chorabik K. Induction and development of Grand Fir (Abies grandis Lindl.) callus in tissue cultures. Electr J Polish Agric Univ, 2007, 10: 1-11.

[38]

Nawrot-Chorabik K. Embryogenic callus induction and differentiation in silver fir (Abies alba Mill.) tissue culture. Dendrobiology, 2008, 59: 31-40.

[39]

Nawrot-Chorabik K. Somaclonal variation in embryogenic cultures of silver fir (Abies alba Mill.). Plant Biosyst, 2009, 143: 377-385.

[40]

Nawrot-Chorabik K. Ken-Ichi S. Embryogenesis. Somatic embryogenesis in forest plants, 2012, Rijeka: InTech open science Publisher 423 446

[41]

Nawrot-Chorabik K. Possible use dual cultures in the forestry practice. Sylwan, 2013, 157: 54-62.

[42]

Nawrot-Chorabik K. Interactions between embryogenic callus of Abies alba and Heterobasidion spp. in dual cultures. Biol Plant, 2014, 58: 363-369.

[43]

Nawrot-Chorabik K. The effect of explant origin, media and growth regulators on the initiation and proliferation of embryogenic callus of Pinus sylvestris in somatic embryogenesis. Phyton-Ann Rei Bot, 2015, 55: 279-295.

[44]

Nawrot-Chorabik K. Zastosowanie tkanki kalusa w biotechnologii drzew leśnych: badania in vitro. Kosmos 64: 305-317 (The use callus tissue in forest tree biotechnology: studies in vitro. Cosmos, 2015, 64: 305-317.

[45]

Nawrot-Chorabik K. Plantlet regeneration through somatic embryogenesis in Nordmann’s fir (Abies nordmanniana). J For Res, 2016, 27: 1219-1228.

[46]

Nawrot-Chorabik K. Response of the callus cells of fir (Abies nordmanniana) to in vitro heavy metal stress. Folia For Pol Ser A For, 2017, 59: 25-33.

[47]

Nawrot-Chorabik K, Jankowiak R. Preliminary studies on disinfection of explants of grand fir (Abies grandis Lindl.) used in in vitro cultures for micropropagation of fir. Sci Papers Acad Agric, 1999, 28: 39-50.

[48]

Nawrot-Chorabik K, Sitko K. The effect of abscicsic acid and dimethyl sulfoxide and different temperatures on the cryopreservation process of Abies nordmanniana (Steven) Spach embryogenic callus. Phyton-Ann Rei Bot, 2014, 55: 279-295.

[49]

Nawrot-Chorabik K, Jankowiak R, Grad B. Growth of two blue-stain fungi associated with Tetropium beetles in the presence of callus cultures of Picea abies. Dendrobiology, 2011, 66: 41-47.

[50]

Nawrot-Chorabik K, Grad B, Kowalski T. Interactions between callus cultures of Pinus sylvestris and pine fungi with different trophic properties. For Pathol, 2016, 46: 179-186.

[51]

Nhut DT, Hien NTT, Don NT, Khiem DV. Jain SM, Häggman H. In vitro shoot development of Taxus wallichiana Zucc., a valuable medicinal plant. Protocols for micropropagation of woody trees and fruits, 2007, Berlin: Springer 107 116

[52]

Palo RT. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol, 1984, 10: 499-520.

[53]

Park YS (2001) Implementation of somatic embryogenesis in clonal forestry: technical requirements and deployment strategies. In: International Conference on: Wood, Breeding, Biotechnology and Industrial expectations, Abstract, Bordeaux, pp 106

[54]

Rangaswamy NS. Somatic embryogenesis in angiosperm cell tissue and organ cultures. Proc Plant Sci, 1986, 96: 247-271.

[55]

Rao PS. In vitro induction of embryonic proliferation in Santalum album L. Phytomorphology, 1965, 15: 175-179.

[56]

Rodríguez R, Valledor L, Sánchez P, Fraga MF, Berdasco M, Hasbún R, Rodríguez JL, Pacheco JC, García I, Uribe MM, Ríos D, Sánchez M, Materán ME, Walter C, Cañal MJ. Jain SM, Häggman H. Propagation of selected Pinus genotypes regardless of age. Protocols for micropropagation of woody trees and fruits, 2007, Berlin: Springer 137 146

[57]

Salaj T, Salaj J. Somatic embryo formation on mature Abies alba × Abies cephalonica zygotic embryo explants. Biol Plant, 2003, 47: 7-11.

[58]

Schulz B, Boyle Ch, Draeger S, Römmert AK, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res, 2002, 106: 996-1004.

[59]

Seki M, Nakajima M, Furusaki S. Continuous production of taxol by cell culture of Taxus cuspidata. J Chem Eng Jpn, 1995, 28: 488-490.

[60]

Sparg SG, Light ME, Van Staden J. Biological activities and distribution of plant saponins. J Ethnopharm, 2004, 94: 219-243.

[61]

Steward FC. Growth and development of cultivated cells. III. Interpretations of the growth from free cell of carrot. Am J Bot, 1958, 45: 709-713.

[62]

Szczygieł K. Somatic embryogenesis—alternative way of obtaining selected planting stock of coniferous tree species. For Res Papers, 2005, 3: 71-92.

[63]

Szczygieł K, Wojda T. Micropropagation of wild cherry (Prunus avium L.) and its plantation cultivation in Italy. For Res Papers, 2008, 69: 72-75.

[64]

Toribo M, Celestino C, Molinas M (2005) Cork oak, Quercus suber L. In: Jain SM, Gupta P (eds) Protocol for somatic embryogenesis in woody plants. Forestry sciences, vol 77. Springer, Berlin, pp 445–458

[65]

Walters C, Find JI, Grace LJ (2005) Somatic embryogenesis and genetic transformation in Pinus radiata. In: Jain SM, Gupta P (eds) Protocol for somatic embryogenesis in woody plants. Forestry Sciences, vol 2. Springer, pp 11–24

[66]

Wang Ch, Wu J, Mei X. Enhancement of Taxol production and execration in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol, 2001, 55: 404-410.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/