Agrobacterium tumefaciens-mediated transformation of Eucalyptus urophylla clone BRS07-01

Gisela Manuela de França Bettencourt , Carlos Ricardo Soccol , Thais Salete Giovanella , Luziane Franciscon , Daiane Rigoni Kestring , Isabel Rodrigues Gerhardt , Juliana Degenhardt-Goldbach

Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 507 -519.

PDF
Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 507 -519. DOI: 10.1007/s11676-018-0777-4
Original Paper

Agrobacterium tumefaciens-mediated transformation of Eucalyptus urophylla clone BRS07-01

Author information +
History +
PDF

Abstract

Genetic transformation is becoming routine for engineering specific traits in important clones of recalcitrant species such as Eucalyptus; however, the efficiency is still low for most species, so many researchers still use seeds instead of clones as initial explants. This work aimed to develop a genetic transformation protocol, based on a highly efficient in vitro organogenesis protocol, for an Eucalyptus urophylla clone selected in our breeding program. Plant growth regulators were evaluated for indirect organogenesis and rooting. In a two-step protocol, the combination of callus induction media supplemented with 0.5 µM thidiazuron + 0.5 µM naphthaleneacetic acid (NAA) and shoot induction media supplemented with 5.0 µM benzylaminopurine + 1.0 µM NAA allowed up to 85.6% shoot formation with more shoots per explants when compared with other concentrations. Transgenic plants expressing the uidA gene were obtained using Agrobacterium tumefaciens and selected for kanamycin resistance. A RAPD analysis was used to check for somaclonal variation. In tests using 11 RAPD primers, we did not observe somaclonal variation in the in vitro stages evaluated.

Keywords

Eucalyptus / Genetic transformation / In vitro regeneration / Plant growth regulators / Somaclonal variation

Cite this article

Download citation ▾
Gisela Manuela de França Bettencourt, Carlos Ricardo Soccol, Thais Salete Giovanella, Luziane Franciscon, Daiane Rigoni Kestring, Isabel Rodrigues Gerhardt, Juliana Degenhardt-Goldbach. Agrobacterium tumefaciens-mediated transformation of Eucalyptus urophylla clone BRS07-01. Journal of Forestry Research, 2018, 31(2): 507-519 DOI:10.1007/s11676-018-0777-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aggarwal D, Kumar A, Reddy MS. Shoot organogenesis in elite clones of Eucalyptus tereticornis. Plant Cell Tissue Organ Cult, 2010, 102: 45-52.

[2]

Aggarwal D, Kumar A, Sudhakara Reddy M. Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiol Plant, 2011, 33: 1603-1611.

[3]

Aggarwal D, Kumar A, Sharma J, Reddy MS. Factors affecting micropropagation and acclimatization of an elite clone of Eucalyptus tereticornis Sm. Vitr Cell Dev Biol Plant, 2012, 48: 521-529.

[4]

Aggarwal D, Reddy MS, Kumar A. Anis M, Ahmad N. Biotechnological approaches for the improvement of Eucalyptus. Plant tissue culture: propagation, conservation and crop improvement, 2016, Singapore: Springer 219 244

[5]

Ahad A, Maqbool A, Malik KA. Optimization of agrobacterium tumefaciens mediated transformation in Eucalyptus camaldulensis. Pak J Bot, 2014, 46: 735-740.

[6]

Alcantara GBD, Bespalhok Filho JC, Quoirin M. Organogenesis and transient genetic transformation of the hybrid Eucalyptus grandis ×  Eucalyptus urophylla Organogênese e transformação genética transiente do híbrido Eucalyptus grandis ×  Eucalyptus urophylla. Sci Agric, 2011, 68: 246-251.

[7]

Alves ECSD, Xavier A, Otoni WC. Organogenesis of the leaf explant of Eucalyptus grandis ×  E. urophylia clones. Pesqui Agropecu Bras, 2004, 39: 421-430.

[8]

Azmi A, Noin M, Landré P, Prouteau M, Boudet AM, Chriqui D. High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: ontogenesis and ploidy level of the regenerants. Plant Cell Tissue Organ Cult, 1997, 51: 9-16.

[9]

Bandypadhyay S, Cane K, Rasmussen G, Hamill JD. Efficient plant regeneration from seedling explants of two commercially important temperate eucalypt species Eucalyptus nitens and Eucalyptus globulus. Plant Sci, 1999, 140: 189-198.

[10]

Bell RL, Srinivasan C, Lomberk D. Effect of nutrient media on axillary shoot proliferation and preconditioning for adventitious shoot regeneration of pears. Vitr Cell Dev Biol Plant, 2009, 45: 708-714.

[11]

Boerjan W. Biotechnology and the domestication of forest trees. Curr Opin Biotechnol, 2005, 16: 159-166.

[12]

Chitra DSV, Padmaja G. Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci Hortic (Amsterdam), 2005, 106: 593-602.

[13]

Cid LPB, Gomes ACM, Costa SBR, Brasileiro ACM. Plant regeneration from seedling explants of Eucalyptus grandis ×  E. urophylla. Plant Cell Tissue Organ Cult, 1999, 56: 17-23.

[14]

da Silva ALL, De Oliveira Y, da Costa JL, Masetto E, Mudry CDS, Erasmo EAL, Scheidt GN. Shoot tip and cotyledon explants of Eucalyptus saligna Sm. cultivated on different kanamycin levels. J. Biotechnol. Biodivers., 2010, 1: 1-5.

[15]

de la Torre F, Rodríguez R, Jorge G, Villar B, Álvarez-Otero R, Grima-Pettenati J, Gallego PP. Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell Tissue Organ Cult, 2014, 117: 77-84.

[16]

de Paiva HN, Jacovine LAG, Trindade C, Ribeiro GT. Cultivo de Eucalipto: Implantação e Manejo, 2011, Viçosa: Aprenda fácil.

[17]

Dibax R, Eisfeld CDL, Cuquel FL, Koehler H. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis. Sci Agric, 2005, 62: 406-412.

[18]

Dibax R, Deschamps C, Bespalhok Filho JC, Vieira LGE, Molinari HBC, Campos MKF, Quoirin M. Organogenesis and Agrobacterium tumefacienes-mediated transforation of Eucalypruts saligna with P5CS gene. Biol Plant, 2010, 54: 6-12.

[19]

Dibax R, Deschamps C, Filho JCB, Vieira LGE, Molinari HBC. Transformation of Eucalyptus saligna with P5CS gene. Biol Plant, 2010, 54: 6-12.

[20]

Dibax R, Quisen RC, Bona C, Quoirin M. Plant regeneration from cotyledonary explants of Eucalyptus camaldulensis Dehn and histological study of organogenesis in vitro. Braz Arch Biol Technol, 2010, 53: 311-318.

[21]

Fernando SC, Goodger JQD, Gutierrez SS, Johnson AAT, Woodrow IE. Plant regeneration through indirect organogenesis and genetic transformation of Eucalyptus polybractea R.T. Baker Ind Crops Prod, 2016, 86: 73-78.

[22]

Ferreira ME, Grattapaglia D (1998) Introdução ao uso de marcadores moleculares em análise genética, 3rd ed. Embrapa-Cernagem Documento 20, Brasília

[23]

Figueiredo PN. Evolution of the short-fiber technological trajectory in Brazil’s pulp and paper industry: the role of firm-level innovative capability-building and indigenous institutions. For Policy Econ, 2016, 64: 1-14.

[24]

Gallego PP, Rodriguez R, de la Torre F, Villar B. Espinel S, Barredo Y, Ritter E. Genetic transformation of Eucalyptus globulus. Sustainable forestry wood products and biotechnology, 2003, Vitoria-Gasteiz: DFA-AFA Press 163 170

[25]

Glocke P, Collins G, Sedgley M. 6-Benzylamino purine stimulates in vitro shoot organogenesis in Eucalyptus erythronema, E. stricklandii and their interspecific hybrids. Sci Hortic (Amsterdam), 2006, 109: 339-344.

[26]

González ER. Transformação genética de Eucalyptus grandis e do híbrido E. grandis × E. urophylla via Agrobacterium, 2002, São Paulo: Universidade de São Paulo

[27]

González ER, de Andrade A, Bertolo AL, Lacerda GC, Carneiro RT, Defávari VAP, Labate MTV, Labate CA. Production of transgenic Eucalyptus grandis ×  E. urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system. Funct Plant Biol, 2002, 29: 97-102.

[28]

Grattapaglia D, Kirst M. Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol, 2008, 179: 911-929.

[29]

Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes, 2012, 8: 463-508.

[30]

Hajari E, Watt MP, Mycock DJ, McAlister B. Plant regeneration from induced callus of improved Eucalyptus clones. S Afr J Bot, 2006, 72: 195-201.

[31]

Hervé P, Jauneau A, Pâques M, Marien JN, Boudet AM, Teulières C. A procedure for shoot organogenesis in vitro from leaves and nodes of an elite Eucalyptus gunnii clone: comparative histology. Plant Sci, 2001, 161: 645-653.

[32]

Huang Z, Zeng F, Lu X. Efficient regeneration of Eucalyptus urophylla from seedling-derived hypocotyls. Bio Plant, 2010, 54: 131.

[33]

Jefferson RA. Experimental protocols: assaying chimeric genes in plants—the GUS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387-405.

[34]

Ke J, Khan R, Johnson T, Somers DA, Das A. High-efficiency gene transfer to recalcitrant plants by Agrobacterium tumefaciens. Plant Cell Rep, 2001, 20: 150-156.

[35]

Lainé E, David A. Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep, 1994, 13: 473-476.

[36]

Leva A.R., Petruccelli R., Rinaldi L.M.R.. Somaclonal Variation in Tissue Culture: A Case Study with Olive. Recent Advances in Plant in vitro Culture, 2012

[37]

Li LM, Ouyang LJ, Gan SM. Towards an efficient regeneration protocol for Eucalyptus urophylla. J Tropic Forest Sci, 2015, 27(3): 289-297.

[38]

Lloyd G, McCown B. Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Prop Soc Proc, 1981, 30: 421-427.

[39]

Ma C, Deepika R, Myburg AA, Ranik M, Strauss SH. Development of Eucalyptus tissue culture conditions for improved in vitro plant health and transformability. BMC Proc, 2011, 5: P153.

[40]

Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T. Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep, 2012, 31: 225-235.

[41]

McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Al E. Agriculture: feeding the future. Nature, 2013, 499: 23-24.

[42]

McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol, 2006, 22: 101-127.

[43]

Mundhara R, Rashid A. TDZ-induced triple-response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci, 2006, 170: 185-190.

[44]

Munir F, Naqvi S, Mahmood T. In vitro culturing and assessment of somaclonal variation of Solanum tuberosum var. desiree. Turk J Biochem, 2011, 36: 296-302.

[45]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.

[46]

Murthy BNS, Murch SJ. Thidiazuron: a potent regulator of in vitro plant morphogenesis. Vitr Cell Dev Biol, 1998, 34: 267-275.

[47]

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature, 2014, 510(7505): 356-362.

[48]

Mycock DJ, Watt MP. Shoot and root morphogenesis from Eucalyptus grandis ×  E. urophylla callus. Afr J Biotechnol, 2012, 11: 16669-16676.

[49]

Oberschelp G, Gonçalves A, Graner E, Almeida M. Eucalyptus dunni Maiden plant regeneration via shoot organogenesis on a new basal medium based on the mineral composition of young stump shoots. Vitr Cell Dev Biol Plant, 2015

[50]

Oliveira CD, Degenhardt-Goldbach J, Amano E, Franciscon L, Quoirin M. Micropropagation of Eucalyptus grandis ×  E. urophylla AEC 224 clone. J For Res, 2017, 28(1): 29-39.

[51]

Oliveira-Cauduro Y, Adamuchio LG, Degenhardt-Goldbach J, Bespalhok Filho JC, Dibax R, Quoirin M. Organogênese indireta a partir de explantes foliares e multiplicação in vitro de brotações de Eucalyptus benthamii ×  Eucalyptus dunnii. Ciência Florest, 2014, 24: 347-355.

[52]

Poke FS, Vaillancourt RE, Potts BM, Reid JB. Genomic research in Eucalyptus. Genetica, 2005, 125: 79-101.

[53]

Prakash MG, Gurumurthi K. Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. Vitr Cell Dev Biol Plant, 2009, 45: 429-434.

[54]

Preece JE, Imel MR. Plant regeneration from leaf explants of Rhododendron “P.J.M Hybrids”. Sci Hortic (Amsterdam), 1993, 48: 159-170.

[55]

Quoirin M, Lepoivre P. Etude de Millieux adaptes aux Cultures In Vitro de Prunus. Acta Hortic, 1977, 78: 437-442.

[56]

Rahim F, Jabeen M, Ilahi I. Mass propagation in Eucalyptus camaldulensis Dehn. Asian J Plant Sci, 2003, 2: 184-187.

[57]

Resende M, Resende M Jr, Sansaloni C, Petroli C, Missiaggia A, Aguiar A, Abad J, Takahashi E, Rosado A, Faria D, Pappas GJ, Kilian A, Grattapaglia D. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol, 2012, 194: 116-128.

[58]

Ribeiro SR. Regeneração e transformação em Eucalyptus grandis Regeneração e transformação em Eucalyptus grandis, 2012, Lisbon: Universidade de Lisboa.

[59]

Salazar MM, Nascimento LC, Camargo ELO, Gonçalves DC, Neto JL, Marques WL, Teixeira PJPL, Mieczkowski P, Mondego JMC, Carazzolle MF, Deckmann AC, Amarante G, Pereira G. Xylem transcription profiles indicate potential metabolic responses for economically relevant characteristics of Eucalyptus species. BMC Genom, 2013

[60]

Sambrook J, Fritsch EF, Maniatis T, Spring HLC. Molecular cloning: a laboratory manual, 1989 2 Colc Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

[61]

Santarém ER, Trick HN, Essig JS, Finer JJ. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep, 1998, 17: 752-759.

[62]

Serrano L, Rochange F, Semblat JP, Marque C, Teulieres C, Boudet A. Genetic transformation of Eucalyptus globulus through biolistics: complementary development of procedures for organogenesis from zygotic embryos and stable transformation of corresponding proliferating tissue. J Exp Bot, 1996, 47: 285-290.

[63]

Strauss S, Myburgh A. Plant scientists celebrate new woody plant genome. New Phytol, 2015, 206: 1185-1187.

[64]

Sun SL, Zhong JQ, Li SH, Wang XJ. Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Bot Stud, 2013, 54: 1-7.

[65]

Suttle JC. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol, 1988, 86: 241-245.

[66]

R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. 24 dtw

[67]

Tibok A, Blackhall NW, Power JB, Davey MR. Optimized plant regeneration from callus derived from seedling hypocotyls of Eucalyptus urophylla. Plant Sci, 1995, 110: 139-145.

[68]

Tournier V, Grat S, Marque C, El Kayal W, Penchel R, De Andrade G, Boudet AM, Teulières C. An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis ×  Eucalyptus urophylla). Transdenic Res, 2003, 12: 403-411.

[69]

Tsuro M, Koda M, Inoue M. Comparative effect of different types of cytokinin for shoot formation and plant regeneration in leaf-derived callus of lavender (Lavandula vera DC). Sci Hortic (Amsterdam), 1999, 81: 331-336.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/