The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China

Limin Dai , Shanlin Li , Bernard J. Lewis , Jian Wu , Dapao Yu , Wangming Zhou , Li Zhou , Shengnan Wu

Journal of Forestry Research ›› 2018, Vol. 30 ›› Issue (6) : 2227 -2236.

PDF
Journal of Forestry Research ›› 2018, Vol. 30 ›› Issue (6) : 2227 -2236. DOI: 10.1007/s11676-018-0771-x
Original Paper

The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China

Author information +
History +
PDF

Abstract

Land use changes are a direct consequence of interactions between humans and nature. Analysing the spatial and temporal changes in habitat quality brought about by land use change can provide a scientific basis for ecological protection and land planning. Based on the analysis of land use change from 1990 to 2010 in Northeast China, we used the InVEST (integrated valuation of ecosystem services and trade-offs) module to evaluate habitat quality based on watershed subdivision. The results show that: (1) the main land use changes from 1990 to 2010 were the transition from grasslands and forest lands to agricultural lands, which led to a decrease in connectivity of landscape and an increase in fragmentation; (2) areas of high habitat quality were distributed north of the Greater Khingan Mountains, the region of the Lesser Khingan Mountains and east of the Changbai Mountains, while the central plain had low habitat quality; (3) agricultural lands had the largest effect on habitat degradation among all habitat threats. During these 2 decades, the contribution of agricultural lands to habitat degradation were 43.4% in 1990, 44.6% in 2000 and 43.9% in 2010; and, (4) at a landscape scale, patch density and splitting index present noticeable negative correlations with habitat quality index. Habitat quality was significantly affected by landscape fragmentation and decreased connectivity.

Keywords

InVEST model / Habitat quality / Land use change / Landscape pattern

Cite this article

Download citation ▾
Limin Dai, Shanlin Li, Bernard J. Lewis, Jian Wu, Dapao Yu, Wangming Zhou, Li Zhou, Shengnan Wu. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. Journal of Forestry Research, 2018, 30(6): 2227-2236 DOI:10.1007/s11676-018-0771-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anonymous (2002) People’s Republic of China National Report on Sustainable Development (in Chinese). China Environmental Science Press, Beijing

[2]

Baral H, Keenan RJ, Sharma SK, Stork NE, Kasel S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol Indic, 2014, 36: 552-562.

[3]

Boswell GP, Britton NF, Franks NR. Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc R Soc B, 1998, 265(1409): 1921-1925.

[4]

Burkey TV. Extinction in fragmented habitats predicted from stochastic birth–death processes with density dependence. J Theor Biol, 1999, 199(4): 395-406.

[5]

Butchart SHM, Walpole M, Collen B, Strien AV, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R. Global biodiversity: indicators of recent declines. Science, 2010, 328(5982): 1164-1168.

[6]

Chen Y, Qiao F, Jiang L. Effects of land use pattern change on regional scale habitat quality based on InVEST model: a case study in Beijing. J Peking Univ, 2016, 52(3): 553-562.

[7]

Duffy JE. Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ, 2009, 7(8): 437-444.

[8]

Fahrig L. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl, 2002, 12(2): 346-353.

[9]

Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst, 2003, 34(1): 487-515.

[10]

Fischer J, Lindenmayer DB, Manning AD. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ, 2006, 4(2): 80-86.

[11]

Kareiva P. Natural capital: theory and practice of mapping ecosystem services, 2011, New York: Oxford University Press

[12]

Kong LQ, Zhang L, Zheng H, Xu WH, Xiao Y, Ouyang ZY. Driving forces behind ecosystem spatial changes in the Yangtze River Basin. Acta Ecol Sin, 2018, 38(3): 741-749.

[13]

Leh MDK, Matlock MD, Cummings EC, Nalley LL. Quantifying and mapping multiple ecosystem services change in West Africa. Agric Ecosyst Environ, 2013, 165: 6-18.

[14]

Liu JY, Kuang WH, Zhang ZX, Xu XL, Qin YW, Ning J, Zhou WC, Zhang SW, Li RD, Yan CZ, Wu SX, Shi XZ, Jiang N, Yu DS, Pan XZ, Chi WF. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr Sin, 2014, 69(1): 3-14.

[15]

Liu ZF, Tang LN, Qiu QY, Xiao LS, Yang L, Xu T. Temporal and spatial changes in habitat quality based on land-use change in Fujian Province. Acta Ecol Sin, 2017, 37(13): 1-11.

[16]

Munro NT, Lindenmayer DB, Fischer J. Faunal response to revegetation in agricultural areas of Australia: a review. Ecol Manag Restor, 2007, 8(3): 199-207.

[17]

Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ, 2009, 7(1): 4-11.

[18]

Newell GR, White MD, Griffioen P, Conroy M. Vegetation condition mapping at a landscape-scale across Victoria. Ecol Manag Restor, 2006, 7(S1): S65-S68.

[19]

Ouyang ZY, Zheng H. Ecological mechanisms of ecosystem services. Acta Ecol Sin, 2009, 29(11): 6183-6188.

[20]

Pei TF. Zhang PC. Natural forest conversation and flood control and treatment in Northeast China. Discussion on natural forest conservation programme, 2000, Beijing: Chinese Forestry Press 275 293

[21]

Petit S, Firbank L, Wyatt B, Howard D. MIRABEL: models for integrated review and assessment of biodiversity in European landscapes. Ambio, 2001, 30(2): 81-88.

[22]

Polasky S, Nelson E, Pennington D, Johnson KA. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ Resour Econ (Dordr), 2011, 48(2): 219-242.

[23]

R Development Core Team. R: a language and environment for statistical computing, 2016, Vienna: The R Foundation for Statistical Comupting.

[24]

Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B. Biodiversity conservation: challenges beyond 2010. Science, 2010, 329(5997): 1298-1303.

[25]

Rosenberg KV, Lowe JD, Dhondt AA. Effects of forest fragmentation on breeding tanagers: a continental perspective. Conserv Biol, 1999, 13(3): 568-583.

[26]

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774.

[27]

Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M, Mandle L, Hamel P, Vogl AL, L R, W B (2016) InVEST + VERSION + user’s guide. The natural capital project. Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, Stanford

[28]

Tan K, Piao SL, Peng CH, Fang JY. Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982 and 1999. For Ecol Manag, 2007, 240(1–3): 114-121.

[29]

Terrado M, Sabater S, Chaplin-Kramer B, Mandle L, Ziv G, Acuña V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci Total Environ, 2016, 540: 63-70.

[30]

Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D. Forecasting agriculturally driven global environmental change. Science, 2001, 292(5515): 281-284.

[31]

Wang SQ, Zhou CH, Liu JY, Li KR, Yang XM. Simulation analyses of terrestrial carbon cycle balance model in Northeast China. Acta Geogr Sin, 2001, 56(4): 390-400.

[32]

Wang ZQ, Fu JC, Quan B, Zhang DS, Wang F. Changes of reproduction habitat quality of red-crowned crane in Zhalong wetlands. Chin J Appl Ecol, 2010, 21(11): 2871-2875.

[33]

Wu JS, Cao QW, Shi SQ, Huang XL, Lu ZQ. Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change. Chin J Appl Ecol, 2015, 26(11): 3457-3466.

[34]

Yu DP, Zhou L, Zhou WM, Ding H, Wang QW, Wang Y, Wu XQ, Dai LM. Forest management in Northeast China: history, problems, and challenges. Environ Manag, 2011, 48(6): 1122-1135.

[35]

Zhang YL, Dong RC. Impacts of Street-visible greenery on housing prices: evidence from a hedonic price model and a massive street view image dataset in Beijing. ISPRS Int J Geo-Inf, 2018 7 3 104

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/