Decreased morphogenetic potential in peach palm stem-like cells in long-term in vitro conditions

Érika Mendes Graner , Gilvano Ebling Brondani , Cristina Vieira de Almeida , Katherine Derlene Batagin-Piotto , Marcílio de Almeida

Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 485 -495.

PDF
Journal of Forestry Research ›› 2018, Vol. 31 ›› Issue (2) : 485 -495. DOI: 10.1007/s11676-018-0769-4
Original Paper

Decreased morphogenetic potential in peach palm stem-like cells in long-term in vitro conditions

Author information +
History +
PDF

Abstract

Peach palm (Bactris gasipaes Kunth) has been micropropagated from pre-procambial cells that provide stem-like cell niches, (i.e., pre-procambial cells), multipotent, pluripotent and totipotent for direct vascularization, adventitious buds and somatic embryogenesis, respectively. The direct induction of adventitious buds and somatic embryogenesis reduces the frequency of mutations when compared to indirect morphogenesis. Long-term in vitro cultivation of perennial species such as peach palm cause the clones to age and deteriorate; however, the consequences for morphogenesis potential are not fully clear. The morphogenic potential of peach palm clones established and in vitro cultivated for 8 years (regeneration of adventitious buds without callus formation) was investigated in leaves, roots and stem bases using histological and histochemical analyses. Data from long-term cultures (8-years-old) was compared to data from short-term cultures (1-year-old). Morphogenic pathways monitoring for direct induction of somatic embryos and adventitious buds revealed a strong morphogenic reduction potential in the pre-procambial cells, parenchyma cells in the proximal region of stem bases, and external cells of leaf sheaths. Initial cells of shoot apical meristems and pre-procambial cells commit cell reprogramming to the undifferentiated state and subsequent acquisition of cellular competence. These results are applicable in the micropropagation of peach palm, with consideration to obtaining clones and their long-term in vitro culture.

Keywords

Micropropagation / Multipotency / Pluripotency / Totipotency / Pre-procambial cells / Peach palm / Bactris gasipaes

Cite this article

Download citation ▾
Érika Mendes Graner, Gilvano Ebling Brondani, Cristina Vieira de Almeida, Katherine Derlene Batagin-Piotto, Marcílio de Almeida. Decreased morphogenetic potential in peach palm stem-like cells in long-term in vitro conditions. Journal of Forestry Research, 2018, 31(2): 485-495 DOI:10.1007/s11676-018-0769-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akin-Idowu PE, Ibitoye DO, Ademoyegun OT. Tissue culture as a plant production technique for horticultural crops. Afr J Biotechnol, 2009, 8(16): 3782-3788.

[2]

Alemanno L, Ramos T, Gargadenec A, Andary C, Ferriere N. Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann Bot, 2003, 92(4): 613-623.

[3]

Al-Khayri JM, Naik PM. Date palm micropropagation: advances and applications. Ciênc Agrotec, 2017, 41(4): 347-358.

[4]

Almeida M, Almeida CV. Somatic embryogenesis and in vitro plant regeneration from pejibaye adult plant leaf primordial. Pesqui Agropecu Bras, 2006, 41(9): 1449-1452.

[5]

Almeida M, Kerbauy GB. Micropropagation of Bactris gasipaes (Palmae) through flower bud culture. Rev Bras Fisiol Veg, 1996, 8(3): 215-217.

[6]

Almeida M, Almeida CV, Graner E, Brondani GE, Abreu-Tarazi MF. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep, 2012, 31(8): 1449-1452.

[7]

Almeida M, Graner EM, Brondani GE, Oliveira LS, Artioli FA, Almeida LV, Leone GF, Baccarin FJB, Antonelli PO, Cordeiro GM, Oberschelp GPJ, Batagin-Piotto KD. Plant morphogenesis: theorical bases. Adv For Sci, 2015, 2(1): 13-22.

[8]

Bordallo PN, Silva DH, Maria J, Cruz CD, Fontes EP. Somaclonal variation on in vitro callus culture potato cultivars. Hortic Bras, 2004, 22(2): 300-304.

[9]

Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development. Plant Mol Biol, 2009, 69(4): 347-360.

[10]

Devi K, Sharma M, Ahuja PS. Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.). S Afr J Bot, 2014, 93: 207-216.

[11]

Dickison W. Integrative plant anatomy, 2000, New York: Elsevier Science Publishing Co Inc 533

[12]

Fisher DB. Protein staining of ribonned epon section for light microscopy. Histochemie, 1968, 16: 92-96.

[13]

Fortes AM, Pais MS. Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot, 2000, 87(7): 971-979.

[14]

Giles KL, Morgan WM. Industrial scale plant micropropagation. Trends Biotechnol, 1987, 5(2): 35-39.

[15]

Graner EM (2009) Morphophysiological evaluations of the development of pejibaye microplants treated with bioregulators. Dissertation, Piracicaba, University of São Paulo, p 242

[16]

Graner EM, Oberschelp GPJ, Brondani GE, Batagin-Piotto KD, Almeida CV, Almeida M. TDZ pulsing evaluation on the in vitro morphogenesis of peach palm. Physiol Mol Biol Plants, 2013, 19(2): 283-288.

[17]

Graner EM, Brondani GE, Almeida CV, Batagin-Piotto KD, Almeida M. Study of senescence in old cultures of the Bactris gasipaes Kunth in vitro. Plant Cell Tissue Organ Cult, 2015, 120(3): 1169-1189.

[18]

Haberlandt G. Kulturversuche mit isolierten Pflanzenzellen. Sber Akad Wiss Wein, 1902, 111: 69-92.

[19]

Joy I, Yeung EC, Kong L, Thorpe TA. Development of white spruce somatic embryos: I. Storage product deposition. In Vitro Cell Dev Biol Plant, 1991, 27(1): 32-41.

[20]

Kaeppler SM, Kaeppler HF, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol, 2000, 43(2/3): 179-188.

[21]

Karnovsky MJ. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol, 1965, 27(15): 137-138.

[22]

Karun A, Siril EA, Radha E, Parthasarathy VA. Somatic embryogenesis and plantlet regeneration from leaf and inflorescense explants of arecanut (Areca catechu L.). Curr Sci, 2004, 86(12): 12-25.

[23]

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LIR, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, Mckinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ. Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467: 285-290.

[24]

Konan KE, Gasselin TD, Kouadio YJ, Flori A, Rival A, Duval Y, Pannetier C. In vitro conservation of oil palm somatic embryos for 20 years on a hormone-free culture medium: characteristics of the embryogenic cultures, derived plantlets and adult palms. Plant Cell Rep, 2010, 29(1): 1-13.

[25]

Ledo AS, Lameira OA, Benbadis AK, Menezes IC, Oliveira MSP, Filho SM. Somatic embryogenesis from zygotic embryos of Euterpe oleracea Mart. Rev Bras Frutic, 2002, 24(3): 601-603.

[26]

Lemoine R, Camera LA, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci, 2013, 4(Article 272): 1-21.

[27]

Lynch P, Souch G, Trigwell S, Keller J, Harding K. Plant cryopreservation: from laboratory to genebank. Asia Pac J Mol Biol Biotechnol, 2011, 18(1): 239-242.

[28]

Meins F. Habituation: hereditable variation in the requirement of cultured plant cells for hormones. Annu Rev Gen, 1989, 23: 395-408.

[29]

Munné-Bosch S. Aging in perennials. Crit Rev Plant Sci, 2007, 26(3): 123-138.

[30]

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant, 1962, 15(3): 473-497.

[31]

Phillips GC. In vitro morphogenesis in plants—recent advances. In Vitro Cell Dev Biol Plant, 2004, 40(4): 342-345.

[32]

Rocha DI, Vieira LM, Tanaka FAO, Silva LC, Otoni WC. Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma, 2012, 249(3): 747-758.

[33]

Roche B, Arcangioli B, Martienssen R. Transcriptional reprogramming in cellular quiescence. RNA Biol, 2017, 14(7): 843-853.

[34]

Sakai WS. Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol, 1973, 48(5): 247-249.

[35]

Sharma T, Modgil M, Thakur M. Factors affecting induction and development of in vitro rooting in apple rootstocks. Indian J Exp Biol, 2007, 45(9): 824-829.

[36]

Stein VC, Paiva R, Vargas DP, Soares OS, Alves E, Nogueira GF. Ultrastructural calli analysis of Inga vera Willd. subsp. Affinis (DC.) T.D. Penn. Rev Árvore, 2010, 34(5): 789-796.

[37]

Steinmacher DA, Cagahuala-Inocente GC, Clement CR, Guerra MP. Somatic embryogenesis from peach palm zygotic embryos. In Vitro Cell Dev Biol Plant, 2007, 43(2): 124-132.

[38]

Steinmacher DA, Clement CR, Guerra MP. Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tissue Org Cult, 2007, 89(1): 15-22.

[39]

Steinmacher DA, Guerra MP, Saaresurminski K, Lieberei RA. Temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot, 2011, 108(8): 1463-1475.

[40]

Taylor CB. Plant vegetative development: from seed and embryo to shoot and root. Plant Cell, 1997, 9(7): 981-988.

[41]

Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-La-Peña C. In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Organ Cult, 2014, 118(2): 187-201.

[42]

Valledor L, Hasbún R, Meijón M, Rodríguez JL, Santamaría E, Viejo M, Berdasco M, Feito I, Fraga MF, Cañal MJ, Rodríguez R. Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue Organ Cult, 2007, 91(2): 75-86.

[43]

Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ. Pluripotent versus totipotent plant stem cells: dependence versus autonomy?. Trends Plant Sci, 2007, 12(6): 245-252.

[44]

Wang JH, Bayles KW. Programmed cell death in plants: lessons from bacteria?. Trends Plant Sci, 2012, 18(3): 133-139.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/