PDF
Abstract
To find the quantitative trait loci associated with wood density in teak (Tectona grandis L.f.), 21 co-dominant markers including 13 site specific recombinase and 8 EST-based co-dominant markers designed from lignin biosynthesis genes were applied to 174 teak plus tree clones at the National Germplasm Bank, Chandrapur, India. The germplasm bank exhibited 10.6% coefficient of variation for wood densities with 84.5 ± 31.3 genetic polymorphism (%). The highly panmictic set of genotypes (FST = 0.035 ± 0.004) harbored 96.47 ± 0.40 genetic variability (%). The average allelic frequency of the 21 co-dominant markers was 0.65 ± 0.11 with 12.9% pairs of loci in significant LD (p < 0.05, R 2 values > 0.1), confirming their suitability for a strong marker-trait association study. The marker CCoAMT-1 was significantly (p < 0.01) associated with wood density showing stability by both GLM and MLM models and explained 4.3% of the phenotypic effect. The marker from the EST representing CCoAMT can be further developed for gene-assisted selection of elite genotypes of teak with greater wood density. Therefore, we believe that the report will help accelerate the genetic improvement and advance the breeding program of the species.
Keywords
Association mapping
/
Expressed sequence tags (EST)
/
General linear model (GLM)
/
Linkage disequilibrium (LD)
/
Lignin
/
Mixed linear model (MLM)
/
Principal co-ordinate analysis (PCoA)
Cite this article
Download citation ▾
Vivek Vaishnav, Shamim Akhtar Ansari.
Detection of QTL (quantitative trait loci) associated with wood density by evaluating genetic structure and linkage disequilibrium of teak.
Journal of Forestry Research, 2018, 30(6): 2247-2258 DOI:10.1007/s11676-018-0751-1
| [1] |
Ansari SA, Narayanan C, Wali SA, Kumar R, Shukla N, Kumar SR. ISSR markers for analysis of molecular diversity and genetic structure of Indian teak (Tectona grandis L. f.) locations. Ann For Res, 2012, 55(1): 1-13.
|
| [2] |
Araya E, Murillo O, Agullar G, Rocha O, Woolbright S, Kelm P. Possibilities of breeding teak (Tectona grandis L.f.) in Costa Rica assisted by AFLP markers. Kurú: Rev Forest (Costa Rica), 2005, 2(5): 1-8.
|
| [3] |
Bahram S, Inoko H. Microsatellite markers for genome-wide association studies. Nat Rev Genet, 2007, 8: 164.
|
| [4] |
Barefoot AC, Hitchings RG, Ellwood EL, Wilson EH (1970) The relationship between loblolly pine fiber morphology and kraft paper properties. Technical Bulletin. 202 North Carolina Agricultural Experimental Station. Raleigh: North Carolina State University, p 88
|
| [5] |
Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Poulin P, Lenz P, Caron S, Rigault P, Bicho P, Bousquet J, Mackay J. Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genet, 2011, 110: 197-214.
|
| [6] |
Bhat KM, Priya PB. Influence of provenance variation on wood properties of teak from the Western Ghat region in India. IAWA J, 2004, 25: 273-282.
|
| [7] |
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
|
| [8] |
Cantino PD, Harley RM, Wagstaff SJ. Harley H, Richmond TR. Genera of Labiatae: status and classification. Advances in labiate science, 1992, Kew: Royal Botanic Gardens 511 522
|
| [9] |
Chave J (2005) Measuring wood density for tropical forest trees: a field manual for the CTFS sites. http://www.rainfor.org/upload/ManualsEnglish/wood_density_english[1].pdf
|
| [10] |
Cheua-ngam J, Volkaert H. Development of Catalase gene nuclear DNA-based marker for population genetic analysis in Thai teak (Tectona grandis L. f.). Kasetsart J (National Science), 2006, 40: 91-98.
|
| [11] |
Cornelius J. The effectiveness of plus-tree selection for yield. Forest Ecol Manag, 1994, 67(1–3): 23-24.
|
| [12] |
Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics, 2010, 185(4): 1477-1487.
|
| [13] |
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359-361.
|
| [14] |
Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB. High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes, 2009, 5: 225-234.
|
| [15] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620.
|
| [16] |
Excoffier L, Lischer HEL. ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under LINUX and WINDOWS. Mol Ecol Notes, 2010, 10: 564-567.
|
| [17] |
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes, 2007, 7: 574-578.
|
| [18] |
Fofana IJ, Lidah YJ, Diarrassouba N, N’guetta SPA. Genetic structure and conservation of teak (Tectona grandis) plantations in Cote d’Ivoire, revealed by site specific recombinase (SSR). Trop Conserv Sci, 2008, 1(3): 279-292.
|
| [19] |
Fofana I, Ofori D, Poitel M, Verhaegen D. Diversity and genetic structure of teak (Tectona grandis Linn f) in its natural range using DNA microsatellite markers. New Forest, 2009, 37: 175-195.
|
| [20] |
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 2008, 180(2): 977-993.
|
| [21] |
Galeano E, Vasconceios TS, Vidal M, Mejia-Guerra MK, Carrer H. Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC Plant Biol, 2015
|
| [22] |
Gaut BS, Long AD. The lowdown of linkage disequilibrium. Plant Cell, 2003, 15: 1502-1508.
|
| [23] |
Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programs. Nat Rev Genet, 2009, 10: 381-391.
|
| [24] |
Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB. Association genetics in Pinus taeda L. I. Wood property traits. Genetics, 2007, 175: 399-409.
|
| [25] |
Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB. Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity, 2008, 101: 19-28.
|
| [26] |
Hansen OK, Changtragoon S, Ponoy B, Kjær ED, Minn Y, Finkeldey R, Nielsen KB, Graudal L. Genetic resources of teak (Tectona grandis Linn f) strong genetic structure among natural populations. Tree Genet Genomes, 2015
|
| [27] |
Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol, 2010, 188: 501-514.
|
| [28] |
Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Res, 2009, 9: 1322-1333.
|
| [29] |
Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European Aspen (Populus tremula, Salicaceae). Genetics, 2008, 178: 2217-2226.
|
| [30] |
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet, 2010
|
| [31] |
Kaosa-ard A. Teak (Tectona grandis L.f.)—its natural distribution and related factors. Nat Hist Bull Siam Soc, 1981, 29: 55-74.
|
| [32] |
Kedharnath S, Raizada MB (1961) Genetics and forest tree breeding. In: Proceedings of 10th Silvicultural conference Part II. Dehra Dun, pp 203–214
|
| [33] |
Kjaer ED, Kajornsrichon S, Lauridsen EB. Heartwood, calcium and silica content in five provenances of teak (Tectona grandis L.f.). Silvae Genet, 1999, 48: 1-3.
|
| [34] |
Kollert W, Cherubini L (2012) Teak resources and market assessment-2010. FAO Planted Forests and Trees Working Paper FP/47/E, Rome. http://www.fao.org/forestry/plantedforests/67508@170537/en/
|
| [35] |
Kumar V, Kotrange HR, Dhotekar UP. Genetic improvement of teak. Indian Forester, 1998, 124(9): 687-695.
|
| [36] |
Lepoittevin C, Harvengt L, Plomion C, Garnier-Gere P. Association mapping fir growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes, 2012, 8: 113-126.
|
| [37] |
Li Z, Mottonen J, Sillanpa MJ. A robust multiple-locus method for quantitative trait locus analysis of non-normally distributed multiple traits. Heredity, 2015, 115: 556-564.
|
| [38] |
Liu K, Muse SV. Integrated analysis environment for genetic marker data. Bioinformatics, 2005, 21(9): 2128-2129.
|
| [39] |
Ma X, Hall D, Onge KR, Jansson S, Ingvarsson PK. Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics, 2010, 186: 1033-1044.
|
| [40] |
Mackay TFC. Quantitative trait loci in Drosophila. Nat Rev Genet, 2001, 2: 11-20.
|
| [41] |
McKinley RB, Shelbourne CJA, Harris JM, Young GD. Variation in whole-tree basic wood density for a range of plantation species grown in New Zealand. N Z J For Sci, 2000, 30(3): 436-446.
|
| [42] |
Meadows JRS, Chan EKF, Kijas JW. Linkage disequilibrium compared between five populations of domestic sheep. BMC Genet, 2008
|
| [43] |
Meyermans H, Morreel K, Lapierre C, Pollet B, Bruyn DA, Busson R, Herdewijn P, Devreese B, Beeumen VJ, Marita JM, Ralph J, Chen C, Burggraeve B, Montagu VM, Messens E, Boerjan W. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem, 2000, 275: 36899-36909.
|
| [44] |
Miranda I, Sousa V, Pereira H. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci, 2011
|
| [45] |
Moya R, Marin JD, Murillo O, Leandro L. Wood physical properties, color, decay resistance and stiffness in Tectona grandis clones with evidence of genetic control. Silvae Genet, 2013, 62(3): 142-152.
|
| [46] |
Narayanan C, Wali SA, Shukla N, Kumar R, Mandal AK, Ansari SA. RAPD and ISSR markers for molecular characterization of teak (Tectona grandis) plus trees. J Trop Forest Sci, 2007, 19(4): 218-225.
|
| [47] |
Nei M, Tajima F, Tateno Y. Accuracy of estimated phylo-genetic trees from molecular data. J Mol Evol, 1983, 19: 153-170.
|
| [48] |
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 2012, 28: 2537-2539.
|
| [49] |
Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol, 2001, 127(4): 1513-1523.
|
| [50] |
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
|
| [51] |
Pritchard JK, Stephens JK, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181.
|
| [52] |
Quesada T, Gopal V, Cumbie WP, Echert AJ, Wegrzyn JL, Neale DB. Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L). Genetics, 2010, 186: 677-686.
|
| [53] |
Shrestha MK, Volkaert H, Van der Straeten D. Assessment of genetic diversity in Tectonagrandis using amplified fragment length polymorphism markers. Can J Forest Res, 2005, 35: 1017-1022.
|
| [54] |
Slatkin M. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet, 2008, 9: 477-485.
|
| [55] |
Sreekanth PM, Balasundaran M, Nazeem PA, Suma TB. Genetic diversity of nine natural Tectona grandis L. f. populations of the Western Ghats in Southern India. Conserv Genet, 2012, 13: 1409-1419.
|
| [56] |
Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity, 2008, 100: 158-170.
|
| [57] |
Thumma BR, Nolan MF, Evans R, Moran GF. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics, 2005, 171: 1257-1265.
|
| [58] |
Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM, Southerton SG. Identification of a cis-acting regulatory polymorphism in a eucalypt COBRA-like gene affecting cellulose content. Genetics, 2009, 183(3): 1155-1164.
|
| [59] |
Tsoumis G. Science and technology of wood: structure, properties, utilization, 1991, New York: Van Nostrand Reinhold 494
|
| [60] |
Vaishnaw V, Mohammad N, Wali SA, Kumar R, Tripathi SB, Negi MS, Ansari SA. AFLP markers for analysis of genetic diversity and structure of teak (Tectona grandis L.f.) in India. Can J For Res, 2015, 44: 297-306.
|
| [61] |
Varghese M, Nicodemus A, Ramteke PK, Anbazhagi G, Bennet SSR, Subramanian K. Variation in growth and wood traits among nine populations of teak in Peninsular India. Silvae Genet, 2000, 49: 201-205.
|
| [62] |
Verhaegan D, Ofori D, Fofana IJ, Poitel M, Vaillant A. Development and characterization of microsatellite markers in Tectona grandis (Linn. f). Mol Ecol Notes, 2005, 5: 945-947.
|
| [63] |
Verhaegen D, Fofana IJ, Logossa ZA, Ofori D. What is the genetic origin of teak (Tectona grandis L) introduced in Africa and Indonesia?. Tree Genet Genomes, 2010, 6: 717-733.
|
| [64] |
Wang J, Caballero A, Hill WG. The effect of linkage disequilibrium and deviation from Hardy-Weinberg proportions on the changes in genetic variance with bottlenecking. Heredity, 1998, 81: 174-186.
|
| [65] |
White TW, Adams WT, Neale DB. Forest genetics, 2007, Wallingford: CABI Publishing 682
|
| [66] |
Yeh FC, Yang RC, Boyle TJ (1999) POPGENE, Version 1.3. Microsoft Windows-based freeware for population genetic analysis. Distributed by the author (http://www.ualberta.ca/~fyeh/fyeh/)
|
| [67] |
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
|
| [68] |
Zhong R III, Morrison WH, Negrel J, Ye ZH. Dual methylation pathways in lignin biosynthesis. Plant Cell, 1998, 10(12): 2033-2046.
|
| [69] |
Zhong R, Morrison WH, Himmelsbach DS, Poole FL, Ye ZH. Essential role of caffeoyl coenzyme a O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol, 2000, 124(2): 563-578.
|
| [70] |
Zobel B, Talbert J. Applied forest tree improvement, 1984, Canada: Wiley 528
|
| [71] |
Zobel B, Van Buijtenen JP. Wood variation: its cuases and control, 1987, Berlin: Spirnger 636
|