The diversity of arbuscular mycorrhizal fungi of Rosa acicularis ‘Luhe’ in saline areas

Yanrong Zu , Yuan Ping , Liqiang Mu , Tiantian Yang

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1507 -1512.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1507 -1512. DOI: 10.1007/s11676-018-0748-9
Original Paper

The diversity of arbuscular mycorrhizal fungi of Rosa acicularis ‘Luhe’ in saline areas

Author information +
History +
PDF

Abstract

Arbuscular mycorrhizal fungi (AMF) in the soil encompass a diversity of species and play an important role in maintaining ecosystem balance. However, little research has focused on the AMF diversity of Rosa acicularis Lindl. ‘Luhe’, which has been cultivated in northeastern saline areas, because of its strong salt tolerance and cold resistance. In the present study the AMF in the rhizosphere of R. acicularis Luhe were identified and AMF diversity and community composition were assessed using morphological and molecular techniques. Vesicles, hyphae, and arbuscular structures were observed in seedlings of different ages. Result shows that AMF established a good symbiotic relationship with R. acicularis Luhe. The colonization rate and spore density tended to increase over time. The AMF diversity in the rhizosphere of R. acicularis Luhe was low and four species of AMF were validated: Rhizophagus irregularis, Glomus aggregatum, Septoglomus furcatum, and Funneliformis mosseae. Of these, R. irregularis and G. aggregatum were dominant and have high salt tolerance. Determining the AMF diversity in the rhizosphere of R. acicularis Luhe will aid in screening AMF species with strong resistance and using mycorrhizas for plant establishment in breeding programs.

Keywords

Arbuscular mycorrhizal fungi / Rosa acicularis ‘Luhe’ / Saline soil

Cite this article

Download citation ▾
Yanrong Zu, Yuan Ping, Liqiang Mu, Tiantian Yang. The diversity of arbuscular mycorrhizal fungi of Rosa acicularis ‘Luhe’ in saline areas. Journal of Forestry Research, 2019, 30(4): 1507-1512 DOI:10.1007/s11676-018-0748-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Karaki GN. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 2000, 10(2): 51-54.

[2]

An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T. How does arbuscular mycorrhizal colonization vary with host genotype? An example based on maize (Zea mays) germplasms. Plant Soil, 2010, 327(1): 441-453.

[3]

Augé RM, Toler HD, Saxton AM. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza, 2015, 25(1): 13-24.

[4]

Błaszkowski J, Chwat G, Kovács GM. Septoglomus fuscum and S. furcatum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia, 2013, 105(3): 670-680.

[5]

Choudhury B, Kalita MC, Azad P. Distribution of arbuscular mycorrhizal fungi in marshy and shoreline vegetation of Deepar Beel Ramsar Site of Assam, India. World J Microbiol Biotechnol, 2010, 26(11): 1965-1971.

[6]

Cui L, Mu LQ. Ectomycorrhizal commumities associated with Tilia amurensis trees in natural versus urban forests of Heilongjiang in northeast China. J For Res, 2016, 27(2): 401-406.

[7]

Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch HJ, Bothe H. Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol, 1993, 141(1): 33-39.

[8]

Dickie IA, Martínez-García LB, Koele N. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil, 2013, 367(1–2): 11-39.

[9]

Dong L, Li M, Guo SX. A preliminary investigation on species diversity of arbuscular mycorrhizal fungi in rosary. J Qingdao Agric Univ (Nat Sci), 2012, 29(3): 157-163.

[10]

Du R, Zheng HJ, Jia GX. Seedling cultivation of Picea pungens with mycorrhizal fungi. J Beijing For Univ, 2012, 34(1): 70-74.

[11]

Estrada B, Barea JM, Aroca R. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil, 2013, 366(1): 333-349.

[12]

Evelin H, Giri B, Kapoor R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 2012, 22(3): 203-217.

[13]

Gareia IV, Mendoza RE. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza, 2007, 17(3): 167-174.

[14]

Guo XH, Gong J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a saltstressed ecosystem. Mycorrhiza, 2014, 24(2): 79-94.

[15]

Guo SX, Liu RJ. Effects of different peony cultivars on community structure of arbuscular mycorrhizal fungi in rhizosphere soil. Chin J Appl Ecol, 2010, 21(8): 1993-1997.

[16]

Guo SX, Zhang YG, Li M, Liu RJ. AM fungi diversity in the main tree-peony cultivation areas in China. Biodivers Sci, 2007, 15(4): 425-431.

[17]

Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 2011, 21(2): 117-129.

[18]

Husband R, Herre EA, Turner SL, Gallery R, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol, 2002, 11(12): 2669-2678.

[19]

Jiang JS, Liu YJ, Shi GX, Pan JB, Feng HY. The diversity and community assembly of arbuscular mycorrhizal fungi: a review. Chin Bull Life Sci, 2014, 26(2): 169-180.

[20]

Kivlin SN, Hawkes CV, Treseder KK. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem, 2011, 43(11): 2294-2303.

[21]

Krishnamoorthy R, Kim K, Kim C, Sa T. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol Biochem, 2014, 72: 1-10.

[22]

Krüger M, Stockinger H, Krüger C, Schüßler A. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol, 2009, 183(1): 212-223.

[23]

Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis. Plant Soil, 2014, 374(1): 523-537.

[24]

Liu RJ, Chen YL. Mycorrhizology, 2006, Beijing: Science Press 1 22

[25]

Liu RJ, Li XL. Arbuscular mycorrhiza and its application, 2000, Beijing: Science Press 139 142

[26]

Liu RJ, Jiao H, Li Y, Zhu XC. Research advances in species diversity of arbuscular mycorrhizal fungi. Chin J Appl Ecol, 2009, 20(9): 2301-2307.

[27]

Liu M, Zheng R, Bai SL, Wang JG, Li L, Duan GZ. Advances of species diversity of arbuscular mycorrhizal fungi. Microbiol Chin, 2016, 43(8): 1836-1843.

[28]

Liu RJ, Tang M, Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants. J Fungal Res, 2017, 1: 70-88.

[29]

Oliveira RS, Vosatka M, Dodd JC, Castro PM. Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza, 2005, 16(1): 23-31.

[30]

Oztekin GB, Tuzel Y, Tuzel IH. Does mycorrhiza improve salinity tolerance in grafted plants. Sci Hortic, 2013, 149(149): 55-60.

[31]

Petelet-Giraud E, Négrel P, Guerrot C, Aunay B, Dörfliger N. Origins and processes of salinization of a Plio-Quaternary Coastal Mediterranean multilayer aquifer: the Roussillon Basin case study. Procedia Earth Planet Sci, 2013, 7: 681-684.

[32]

Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc, 1970, 55(1): 158-161.

[33]

Séry JM, Kouadjo ZG, Voko BR, Zézé A. Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Front Microbiol, 2016, 7: 2063.

[34]

Sheng M, Tang M, Zhang FF. Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu inner Mongolia and Ningxia. Biodivers Sci, 2011, 19(1): 85-92.

[35]

Smith SE, Read DJ. Mycorrhizal symbiosis, 2008, Cambridge: Academic Press 145 148

[36]

van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett, 2008, 11(3): 296-310.

[37]

Wang FY, Liu RJ. Arbuscular mycorrhizal fungi in saline-alkaline soils of Yellow River Delta. Mycosystema, 2002, 21(2): 196-202.

[38]

Wang YT, Huang YL, Qiu Q, Xin GR, Yang ZY, Shi SH. Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS ONE, 2011 6 9 e24512

[39]

Wang YT, Li T, Li YW, Qiu Q, Li SS, Xin GR. Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol, 2015, 65(2): 603-610.

[40]

Yang HX, Guo SX, Liu RJ. Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land. Chin J Appl Ecol, 2015, 26(1): 311-320.

[41]

Yu DJ. Floar of China: Rosaceae, 1985, Beijing: Science Press 403 405

[42]

Zangaro W, Rostirola LV, Souza PBD, Alves RDA, Lescano LEAM, Rondina ABL, Nogueira MA, Carrenho R. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza, 2013, 23(3): 221-233.

[43]

Zhou ZC, Chen LQ, Huang XF. Screening of Chinese tulip tree mycorrhizal fungi and effect of growing seedling with mycorrhizae. For Res, 2009, 22(2): 196-199.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/