Expression profiles of genes regulated by BplMYB46 in Betula platyphylla

Huiyan Guo , Chunrui Zhang , Yanmin Wang , Yiming Zhang , Yu Zhang , Yucheng Wang , Chao Wang

Journal of Forestry Research ›› 2018, Vol. 30 ›› Issue (6) : 2267 -2276.

PDF
Journal of Forestry Research ›› 2018, Vol. 30 ›› Issue (6) : 2267 -2276. DOI: 10.1007/s11676-018-0738-y
Original Paper

Expression profiles of genes regulated by BplMYB46 in Betula platyphylla

Author information +
History +
PDF

Abstract

The transcription factor BplMYB46 has been identified as a regulator of abiotic stress responses and promoter of secondary wall deposition in Betula platyphylla. To investigate the downstream targets of BplMYB46, the expression profiles of genes in stems from BplMYB46-overexpressing (OE) and BplMYB46-silencing (SE) plants were studied. In OE stems, 952 genes were upregulated, and 1469 were downregulated in comparison to SE stems. In a KEGG pathway enrichment analysis of differentially expressed genes (DEGs), 1387 differentially expressed genes were annotated for 117 metabolic pathways. DEGs were abundant for metabolic pathway, secondary metabolite biosynthesis, plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis. DEGs were implicated lignin or cellulose biosynthesis, cell wall modification, xylem development, disease resistance, stress responses, and anthocyanin biosynthesis. These results suggested that BplMYB46 regulates cell wall development and stress resistance by affecting the expression of these genes. Our study further elucidates the mechanism by which BplMYB46 mediates abiotic stress responses and secondary cell wall biosynthesis in birch.

Keywords

Betula platyphylla / BplMYB46 / The gene expression profiles / Differentially expressed genes

Cite this article

Download citation ▾
Huiyan Guo, Chunrui Zhang, Yanmin Wang, Yiming Zhang, Yu Zhang, Yucheng Wang, Chao Wang. Expression profiles of genes regulated by BplMYB46 in Betula platyphylla. Journal of Forestry Research, 2018, 30(6): 2267-2276 DOI:10.1007/s11676-018-0738-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albert NW, Griffiths AG, Cousins GR, Verry IM, Williams WM. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytol, 2015, 205(2): 882-893.

[2]

Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for aplant responses: an overview. Physiol Mol Biol Plants Int J Funct Plant Biol, 2013, 19(3): 307-321.

[3]

Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res, 1997, 7(10): 986-995.

[4]

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res, 2001, 125(1–2): 279-284.

[5]

Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH. Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol, 2010, 52(2): 205-220.

[6]

Bhattacharjee A, Khurana JP, Jain M. Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response. Front Plant Sci, 2016, 7: 627.

[7]

Burn JE, Hocart CH, Birch RJ, Cork AC, Williamson RE. Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol, 2002, 129(2): 797-807.

[8]

Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113-116.

[9]

Chiu LW, Li L. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta, 2012, 236(4): 1153-1164.

[10]

de Souza A, Hull PA, Gille S, Pauly M. Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. Planta, 2014, 240(5): 1123-1138.

[11]

Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, Yin W. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun, 2014, 450(1): 453-458.

[12]

Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 2011, 107(1): 1-15.

[13]

Fendrych M, Leung J, Friml J. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife, 2016, 5: e19048.

[14]

Figueroa-Yanez L, Pereira-Santana A, Arroyo-Herrera A, Rodriguez-Corona U, Sanchez-Teyer F, Espadas-Alcocer J, Espadas-Gil F, Barredo-Pool F, Castano E, Rodriguez-Zapata LC. RAP2.4a is transported through the phloem to regulate cold and heat tolerance in papaya tree (Carica papaya cv. maradol): implications for protection against abiotic stress. PLoS ONE, 2016 11 10 e0165030

[15]

Fujiwara H, Tanaka Y, Fukui Y, Nakao M, Ashikari T, Kusumi T. Anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Purification, characterization and its role in anthocyanin biosynthesis. Eur J Biochem, 1997, 249(1): 45-51.

[16]

Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouche N, Knight MR, Fromm H. Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta, 2010, 232(1): 165-178.

[17]

Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J Cell Mol Biol, 2005, 43(4): 553-567.

[18]

Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot, 2013, 64(6): 1755-1767.

[19]

Guo H, Wang Y, Wang L, Hu P, Wang Y, Jia Y, Zhang C, Zhang Y, Zhang Y, Wang C, Yang C. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnol J, 2017, 15: 107-121.

[20]

Ilut DC, Coate JE, Luciano AK, Owens TG, May GD, Farmer A, Doyle JJ. A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. Am J Bot, 2012, 99(2): 383-396.

[21]

Kim WC, Ko JH, Kim JY, Kim JM, Bae HJ, Han KH. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J, 2013, 73: 26-36.

[22]

Kim WC, Kim JY, Ko JH, Kang H, Han KH. Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis. Plant Mol Biol, 2014, 85(6): 589-599.

[23]

Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J Cell Mol Biol, 2009, 60(4): 649-665.

[24]

Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol, 2015, 15: 89.

[25]

Lavy M, Prigge MJ, Tao S, Shain S, Kuo A, Kirchsteiger K, Estelle M. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife, 2016, 5: e13325.

[26]

Lee WJ, Jeong CY, Kwon J, Van Kien V, Lee D, Hong SW, Lee H. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana. Plant Cell Rep, 2016, 35(11): 2369-2379.

[27]

Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25(15): 1966-1967.

[28]

Li XL, Yang X, Hu YX, Yu XD, Li QL. A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. Plant Cell Rep, 2014, 33(5): 767-778.

[29]

Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK. The Arabidopsis UDP-glycosyltransferases UGT79B2 and 79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J, 2017, 89(1): 85-103.

[30]

Lin RC, Park HJ, Wang HY. Role of Arabidopsis RAP2.4 in regulating light-and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant, 2008, 1(1): 42-57.

[31]

Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207(3): 692-709.

[32]

Ohashi-Ito K, Matsukawa M, Fukuda H. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol, 2013, 54(3): 398-405.

[33]

Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M. Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep, 2008, 27(10): 1677-1686.

[34]

Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res, 2002 30 9 e36

[35]

Pu L, Li Q, Fan X, Yang W, Xue Y. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics, 2008, 180(2): 811-820.

[36]

Qin Y, Wang M, Tian Y, He W, Han L, Xia G. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep, 2012, 39(6): 7183-7192.

[37]

Qin Y, Tian Y, Han L, Yang X. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun, 2013, 441: 476-481.

[38]

Sanchez-Rodriguez C, Bauer S, Hematy K, Saxe F, Ibanez AB, Vodermaier V, Konlechner C, Sampathkumar A, Ruggeberg M, Aichinger E, Neumetzler L, Burgert I, Somerville C, Hauser MT, Persson S. Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell, 2012, 24(2): 589-607.

[39]

Schwinn KE, Boase MR, Bradley JM, Lewis DH, Deroles SC, Martin CR, Davies KM. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in Petunia and Lisianthus plants, and the Petunia phenotypes are strongly enhanced under field conditions. Front Plant Sci, 2014, 5: 603.

[40]

Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem PPB, 2014, 82: 209-217.

[41]

Spicer R, Tisdale-Orr T, Talavera C. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in populus. PLoS ONE, 2013 8 8 e72499

[42]

Tamasloukht B, Wong Quai Lam MS, Martinez Y, Tozo K, Barbier O, Jourda C, Jauneau A, Borderies G, Balzergue S, Renou JP, Huguet S, Martinant JP, Tatout C, Lapierre C, Barriere Y, Goffner D, Pichon M. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression. J Exp Bot, 2011, 62(11): 3837-3848.

[43]

Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A. The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol, 2006, 69: 26-42.

[44]

Wada T, Kunihiro A, Tominaga-Wada R. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis. PLoS ONE, 2014 9 9 e109093

[45]

Wan L, Wu Y, Huang J, Dai X, Lei Y, Yan L, Jiang H, Zhang J, Varshney RK, Liao B. Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Funct Integr Genomic, 2014, 14(3): 467-477.

[46]

Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE, 2013 8 6 e65120

[47]

Wang L, Qin L, Liu W, Zhang D, Wang Y. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis. Physiol Plant, 2014, 152(1): 84-97.

[48]

Wang S, Li E, Porth I, Chen JG, Mansfield SD, Douglas CJ. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Sci Rep, 2014, 4: 5054.

[49]

Weber RL, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, de Brito GG, Rechenmacher C, Bertagnolli PF, de Sa ME, Campos Mde A, de Amorim RM, Beneventi MA, Margis R, Grossi-de-Sa MF, Bodanese-Zanettini MH. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean. BMC Plant Biol, 2014, 14: 343.

[50]

Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159(4): 1440-1452.

[51]

Xu J, Xing S, Cui H, Chen X, Wang X. Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses. Mol Genet Genomic, 2016, 291(2): 635-646.

[52]

Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS, Ma YZ. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS ONE, 2013 8 10 e73989

[53]

Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X. Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene, 2012, 505(1): 100-107.

[54]

Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 2008, 20(10): 2763-2782.

[55]

Zhong R, Lee C, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol, 2010, 152(2): 1044-1055.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/