Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl.)

Cristina Heredia-Acuña , Juan J. Almaraz-Suarez , Ramón Arteaga-Garibay , Ronald Ferrera-Cerrato , Deisy Y. Pineda-Mendoza

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1727 -1734.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1727 -1734. DOI: 10.1007/s11676-018-0723-5
Original Paper

Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl.)

Author information +
History +
PDF

Abstract

In this study, 10 bacterial strains were isolated from the rhizosphere of coniferous trees on Mount Tláloc in Mexico. The strains were characterized by their capacity to produce auxins, solubilize phosphates and stimulate mycelial growth of the ectomycorrhizal fungus Suillus sp. All isolates were identified at the molecular level. Moreover, an experiment was established to evaluate the response of Pinus pseudostrobus seedlings to inoculation with the rhizobacteria strains. The isolated strains belonged to the species Cupriavidus basilensis, Rhodococcus qingshengii, R. erythropolis, Pseudomonas spp., P. gessardii, Stenotrophomonas rhizophila and Cohnella sp. All of the strains produced auxins; the best producer was R. erythropolis CPT9 (76.4 µg mL−1). P. gessardii CPT6 solubilized phosphate at a significant level (443 µg mL−1). The strain S. rhizophila CPT8 significantly increased the radial growth of the ectomycorrhizal fungus Suillus sp. by 18.8%. Five strains increased the dry mass of the shoots; R. qingshengii CPT4 and R. erythropolis CPT9 increased growth the most, by more than 20%. Inoculation with plant-growth-promoting rhizobacteria can be a very useful practice in a forest nursery to produce healthy, vigorous plants.

Keywords

Biofertilizers / Forest species / Rhizobacteria / Indole acetic acid / Phosphate solubilization

Cite this article

Download citation ▾
Cristina Heredia-Acuña, Juan J. Almaraz-Suarez, Ramón Arteaga-Garibay, Ronald Ferrera-Cerrato, Deisy Y. Pineda-Mendoza. Isolation, characterization and effect of plant-growth-promoting rhizobacteria on pine seedlings (Pinus pseudostrobus Lindl.). Journal of Forestry Research, 2019, 30(5): 1727-1734 DOI:10.1007/s11676-018-0723-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahangarar MA, Dar GH, Bhat ZA. Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions. Ann For Res, 2012, 55(2): 217-227.

[2]

Anand R, Grayston S, Chanway C. N2-Fixation and seedling growth promotion of lodgepole pine by endohytic Paenibacillus Polymyxa. Microb Ecol, 2013, 66: 369-374.

[3]

Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza, 2006, 16: 533-541.

[4]

Barka EA, Nowak J, Clément C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol, 2006, 72(11): 7246-7252.

[5]

Barriuso J, Pereyra MT, García JL, Megías M, Manero FG, Ramos B. Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus- Pinus sp. Microb Ecol, 2005, 50: 82-89.

[6]

Bashan Y, Holguin G. Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees, 2002, 16: 159-166.

[7]

Bent E, Tuzun S, Chanway CP, Enebak S. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol, 2001, 47: 793-800.

[8]

Bonfante P, Anca IA. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol, 2009, 63: 363-383.

[9]

Brunetta CFMJ, Cuoto AA, Goncalves MR, Gomes JM, Binoti DB, EdeP Fonseca. Avaliação da especificidade de rizobactérias isoladas de diferentes espécies de Pinus sp. Rev Árvore, 2007, 31(6): 1027-1033.

[10]

Brunetta CFMJ, Alfenas CA, Mafia GR, Gomes JM, Binoti DB, Fonseca NAN. Isolamiento e seleςã de rizobactérias promotoras do crescimento de Pinus taeda. Rev Árvore, 2010, 34(3): 399-406.

[11]

Calvaruso C, Turpault MP, Frey-Klett P. Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol, 2006 72 2 1258

[12]

Cambrón-Sandoval VH, Sánchez-Vargas NM, Sáenz-Romero C, Vargas-Henández JJ, España-Boquera ML, Herrerías-Diego Y. Genetic parameters for seedling growth in Pinus pseudostrobus families under different competitive environments. New For, 2013, 44: 219-232.

[13]

Čejková A, Masák J, Jirku V, Veselý M, Pátek M, Nešvera J. Potential of Rhodococcus erythopolis as a bioremediation organism. World J Microbiol Biotechnol, 2005, 21: 317-324.

[14]

Chanway CP, Holl FB. Influence of soil biota on Douglas fir Pseudotsuga menziesii seedling growth: the role of rhizosphere bacteria. Can J Bot, 1992, 70: 1025-1031.

[15]

Cuevas-Guzmán R, Cisneros-Lepe EA, Jardel-Peláez EJ, Sánchez-Rodríguez EV, Guzmán-Hernández L, Núñez-López NM, Rodríguez-Guerrero C. Análisis estructural y de diversidad de Abies de Jalisco, México. Rev Mex Biodiv, 2011, 82: 1219-1233.

[16]

Cumming JR, Zawaski C, Desai S, Collart FR. Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. J Soil Sci Plant Nutr, 2015, 15(2): 464-485.

[17]

de Vasconcellos RLF, Cardoso EJBN. Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol, 2009, 54(6): 807-816.

[18]

Enebak SA, Wei G, Kloepper JW. Effects of plant growth-Promoting rhizobacteria on loblolly and slash pine seedlings. For Sci, 1998, 44(1): 139-144.

[19]

Estrada de los Santos P, Martínez-Aguilar L, López-Lara IM, Caballero-Mellado J. Cupriavidus alkaliphilus sp. nov. a new species associated with agricultural plants that grow in alkaline soils. Syst Appl Microbiol, 2012, 35(5): 310-314.

[20]

Frey-Klett P, Garbaye JA, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol, 2007, 176: 22-36.

[21]

Fuentes-Ramírez LE, Cabellero-Mellado J. Siddiqui ZA. Bacterial biofertilizers. PGPR: biocontrol and biofertilization, 2005, Netherlands: Springer 143 172

[22]

Galtier N, Gouy M, Gautier C. SeaView and Phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci, 1996, 12(6): 543-548.

[23]

García JAL, Domenech J, Santamaría C, Camacho M, Daza A, Mañero FJG. Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ Exp Bot, 2004, 52: 239-251.

[24]

Gogotov IN, Khodakov RS. Surfactant production by the Rhodoccocus erythropolis SH-5 bacteria grown on various carbon sources. Appl Biochem Microbiol, 2008, 44(2): 186-191.

[25]

Gómez-Romero M, Soto-Correa JC, Blanco-García JA, Sáenz-Romero C, Villegas J, Lindig-Cisneros R. Estudio de especies de pino para restauración de sitios degradados. Agrociencia, 2012, 46(8): 795-807.

[26]

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 1999, 41: 95-98.

[27]

Holguin G, Bashan Y, Puente E, Carrillo A, Bethlenfalvay G, Rojas A, De Bashan LG. Promoción del crecimiento en plantas por bacterias de la rizosfera. Agric Tec Mex, 2003, 29: 201-211.

[28]

Hrynkiewicz K, Baum C, Leinweber P. Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J Plant Nutr Soil Sci, 2010, 173(5): 747-756.

[29]

Karnwal A. Production of indole acetic acid by fluorescent Pseudomonas in the presence of l-tryptophan and rice root exudates. J Plant Pathol, 2009, 91(1): 61-63.

[30]

Kataoka R, Futai K. A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol Fertil Soils, 2009, 45: 315-320.

[31]

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Thompson JD. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21): 2947-2948.

[32]

Matiru VN, Dakora FD. Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afri J Biotechnol, 2004, 3(1): 1-7.

[33]

Mitchell RG, Wingfield M, Hodge GR, Steenkamp ET, Coutinho TA. Selection of Pinus spp. in South Africa for tolerance to infection by the pitch canker fungus. New For, 2012, 43: 473-489.

[34]

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for production MegaBLAST searches. Bioinformatics, 2008, 24(16): 1757-1764.

[35]

Naito M, Kawamoto T, Fujino K, Kobayashi M, Maruhashi K, Tanaka A. Long term repeated biodesulfuration by inmobilized Rhodoccocus erthropolis Ka2-5-1 cells. Appl Microbiol Biotechnol, 2001, 55: 374-378.

[36]

Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R. Responses of Pinus halapensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil, 2009, 320: 169-179.

[37]

Park SD, Uh Y, Jang IH, Yoon KJ, Kim HM, Bae YJ. Rhodococcus erythopolis septicaemia in a patient with acute lymphocytic leukaemia. J Med Microbiol, 2011, 60: 252-255.

[38]

Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils, 2015, 51(4): 403-415.

[39]

Pii Y, Borruso L, Brusetti L, Crecchino C, Cesco S, Mimmo T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem, 2016, 99: 39-48.

[40]

Poole EJ, Bending GD, Whipps JM, Read DJ. Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol, 2001, 151: 743-751.

[41]

Preston GM. Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond, 2004, 359: 907-918.

[42]

Probanza A, Garcia JL, Paomino MR, Ramos B, Mañero FG. Pinus pinea L. seedlings growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT5106 and B. pumilus CECT5105). Appl Soil Ecol, 2002, 20: 75-84.

[43]

Qian YC, Shi JY, Chen YX, Lou LP, Cui XY, Cao RK, Li PF, Tang J. Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules, 2010, 15(11): 8518-8533.

[44]

Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. Acquisition of phosphorous and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil, 2009, 321: 305-339.

[45]

Rincón A, Valladares F, Gimeno TE, Pueyo JJ. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol, 2008, 28: 1693-1701.

[46]

Rojas A, Holguin G, Glick BR, Bashan Y. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol, 2001, 35: 181-187.

[47]

Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev, 2001, 25(1): 39-67.

[48]

SAS Institue Inc. The SAS system for windows, 1999, North Carolina: Ver. 9.0 SAS Institute Inc. (EUA)

[49]

Sharma T, Rai N. Isolation of Plant Hormone (Indole-3-Acetic Acid) Producing Rhizobacteria and Study on their Effects on Tomato (Lycopersicum esculentum) Seedling. Int J PharmaTech Res, 2015, 7: 099-107.

[50]

Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC. Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir-pine. Crop Prot, 2010, 29: 1142-1147.

[51]

Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol, 2008, 39(1): 151-156.

[52]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12): 2725-2729.

[53]

Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 2003, 255: 571-586.

[54]

Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot, 2001, 52: 487-511.

[55]

White AK, Metcalf WW. Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol, 2007, 61: 379-400.

[56]

Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH. Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol, 2011, 92(6): 1095-1105.

[57]

Wu XQ, Hou L, Sheng JM, Ren JH, Zheng L, Chen D, Ye JR. Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol Fertil Soils, 2012, 48(4): 385-391.

[58]

Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW. Application of rhizobacteria for induced resistance. Eur J Plant Pathol, 2001, 107: 39-50.

[59]

Zenni RD, Simberloff D. Number of source populations as a potential driver of pineinvasions in Brazil. Biol Invasions, 2013, 15: 1623-1639.

[60]

Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC. Extensive desulfuration of diesel by Rhodoccocus erythropolis. Biotechnol Lett, 2007, 29: 123-127.

[61]

Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLoS ONE, 2014 9 4 e93773

[62]

Zhukov DV, Murygina VP, Kalyuzhnyi SV. Kinetic of the degradation of aliphatichydrocarbons by the bacteria Rhodococcus rube y Rhodoccocus erythropolis. Appl Biochem Microbiol, 2007, 43(6): 587-592.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/