Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems

Amsalu Abich , Tadesse Mucheye , Mequanent Tebikew , Yohanns Gebremariam , Asmamaw Alemu

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1619 -1632.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1619 -1632. DOI: 10.1007/s11676-018-0707-5
Original Paper

Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems

Author information +
History +
PDF

Abstract

Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems. However, equations for dry deciduous woodland ecosystems, an important carbon sink in the lowland areas of Ethiopia have not as yet been developed. This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass (AGB) of dominant woody species based on data from destructive sampling for Combretum collinum, Combretum molle, Combretum harotomannianum, Terminalia laxiflora and mixed-species. Diameter at breast height ranged from 5 to 30 cm. Two empirical equations were developed using DBH (Eq. 1) and height (Eq. 2). Equation 2 gave better AGB estimations than Eq. 1. The inclusion of both DBH and H were the best estimate biometric variables for AGB. Further, the equations were evaluated and compared with common generic allometric equations. The result showed that our allometric equations are appropriate for estimating AGB. The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems.

Keywords

Woodland / Allometric equations / Aboveground biomass / Destructive sampling

Cite this article

Download citation ▾
Amsalu Abich, Tadesse Mucheye, Mequanent Tebikew, Yohanns Gebremariam, Asmamaw Alemu. Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. Journal of Forestry Research, 2019, 30(5): 1619-1632 DOI:10.1007/s11676-018-0707-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersson F. Ecological studies in a Scanian woodland and meadow area, southern Sweden. II. Plant biomass, primary production and turnover of organic matter. Bot Not, 1970, 123: 8-51.

[2]

Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. J For Res, 1972, 2: 49-53.

[3]

Basuki TM, Laake PE, Skidmore AK, Hussin YA. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manag, 2009, 257: 1684-1694.

[4]

Beauchamp JJ, Olson JS. Corrections for bias in regression estimates after logarithmic transformation. Ecology, 1973, 54: 1403-1407.

[5]

Brown S. Estimating biomass and biomass change of tropical forests: a primer, 1997, Rome: Food and Agriculture Organization of the United Nations.

[6]

Brown S. Measuring carbon in forests: current status and future challenges. Environ Pollut, 2002, 116: 363-372.

[7]

Brown S, Gillespie AJR, Lugo AE. Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci, 1989, 35(4): 881-902.

[8]

Chamshama AO, Mugasha AG, Zahabu E. Stand biomass and volume estimation for miombo woodlands at Kitulangalo, Morogoro, Tanzania. South Afr For J, 2004, 200: 59-69.

[9]

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145: 87-99.

[10]

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol, 2014, 20: 3177-3190.

[11]

Cheng M, An SS. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. J Arid Land, 2015, 7: 216-223.

[12]

Chidumayo EN. Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia–Julbernardia (miombo) woodland in central Zambia. Environ Conserv, 2013, 41(1): 54-63.

[13]

Cleemput S, Muys B, Kleinn C, Janssens MJJ (2004) Biomass estimation techniques for enclosures in a semi-arid area: a case study in Northern Ethiopia. Rural poverty reduction through research for development and transformation, Berlin, 5–7 October 2004

[14]

Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For Ecol Manag, 2010, 260: 1873-1885.

[15]

Enawgaw C, Kassahun R, Marie A. Report on the assessment of Alatish park in Amhara national regional state, 2006, Addis Ababa: Wildlife Development and Conservation Department.

[16]

FAO (2010) Global forest resources assessment main report. Food and Agriculture Organization of the United Nations, Rome. FAO Forestry Paper 163. ISBN 978-92-5-106654-6

[17]

FAO. Global forest resource assessment 2015. How are the world’s forests changing?, 2015, Rome: Food and Agriculture Organization of the United Nations.

[18]

Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P. Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manag, 2013, 305: 29-37.

[19]

Feyisa K, Beyene S, Megersa B, Said MY, de Leeuw J, Angassa A. Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands. Agrofor Syst, 2016, 92: 1-23.

[20]

George E, Marschner H. Nutrient and water uptake by roots of forest trees. Z Pflanzenernähr Bodenkult, 1996, 159: 11-12.

[21]

Giday K, Eshete G, Barklund P, Aertsen W, Muys B. Wood biomass functions for Acacia abyssinica trees and shrubs and implications for provision of ecosystem services in a community managed exclosure in Tigray, Ethiopia. J Arid Environ, 2013, 94: 80-86.

[22]

Glazier DS. Log-transformation is useful for examining proportional relationships in allometric scaling. J Theor Biol, 2013, 334: 200-203.

[23]

Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens Environ, 1999, 70: 29-51.

[24]

Grundy IM. Wood biomass estimation in dry miombo woodland in Zimbabwe. For Ecol Manag, 1995, 72: 109-117.

[25]

Hailesellassie M (2010) Global forest resources 2010 for Ethiopia. Country report. Food and Agriculture Organization of the United Nations, Rome

[26]

Hailu Z. Ecological impact evaluation of Eucalyptus plantations in comparison with agricultural and grazing land-use types in the Highlands of Ethiopia, 2002, Vienna: Vienna University of Agricultural Sciences.

[27]

Hasen-Yusuf M, Treydte AC, Abule E, Sauerborn J. Predicting aboveground biomass of woody encroacher species in semi-arid rangelands, Ethiopia. J Arid Environ, 2013, 96: 64-74.

[28]

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag, 2010, 260: 1375-1388.

[29]

Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L. Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fenn, 2011, 45(3B): 477-569.

[30]

Ilyas S. Allometric equation and carbon sequestration of Acacia mangium Willd. in coal mining reclamation areas. Civ Environ Res, 2013, 3: 8-16.

[31]

Kerkhoff AJ, Enquist BJ. Multiplicative by nature why logarithmic transformation is necessary in allometry. J Theor Biol, 2009, 257: 519-521.

[32]

Ketterings QM, Coe R, Mv Noordwijk, Ambagau Y, Palm CA. Reducing uncertainity in the use of Allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manag, 2001, 146: 199-209.

[33]

Köhl M, Lasco RD, Cifuentes M, Örjan Jonsson, Korhonen KT, Mundhenk P, José Návar, Stinson G. Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. For Ecol Manag, 2015, 352: 21-34.

[34]

Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RT, Zotz G. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 2005, 309: 1360-1362.

[35]

Lai JS, Yang B, Lin DM, Kerkhoff AJ, Ma KP. The allometry of coarse root biomass: log transformed linear regression or nonlinear regression?. PLoS ONE, 2013 8 10 e77007

[36]

Litton CM, Kauffman JB. Allometric models for predicting aboveground biomass in two widespread woody plant in hawail. Biotropica, 2008, 40(3): 313-320.

[37]

Lugo AE, Silver WL, Colón S. Biomass and nutrient dynamics of restored neotropical forests. Water Air Soil Pollut Focus, 2004, 4: 731-746.

[38]

Mascaro J, Litton CM, Hughes RF, Uowolo A, Schnitzer SA. Minimizing bias in biomass allometry model selection and log-transformation of data. Biotropica, 2011, 2(2): 1-5.

[39]

Mascaro O, Litton CM, Hughes RF, Uowolo A, Schnitzer SA. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol J Lin Soc, 2014, 111: 230-233.

[40]

Mate R, Johansson T, Sitoe A. Biomass equations for tropical forest tree species in Mozambique. Forests, 2014, 5: 535-556.

[41]

Mate R, Johansson T, Sitoe A. Stem volume equations for valuable timber species in Mozambique. J Sustain For, 2015, 34(8): 787-806.

[42]

Mugasha WA, Eid T, Bollandsås OM, Malimbwi RE, Chamshama SAO, Zahabu E, Katani JZ. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manag, 2013, 310: 87-101.

[43]

Negash M, Starr M, Kanninen M, Berhe L. Allometric equations for estimating aboveground biomass of Coffea arabica L. grown in the Rift Valley escarpment of Ethiopia. Agrofor Syst, 2013, 87: 953-966.

[44]

Nelson BW, Mesquita R, Pereira JLG, Souza SGAd, Batista GT, Couto LB. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manag, 1999, 117: 149-167.

[45]

Neyman J, Scott EL. Correction for bias introduced by a transformation of variables. Ann Math Stat, 1960, 31(3): 643-655.

[46]

Ngomanda A, Engone Obiang NL, Lebamba J, Moundounga Mavouroulou Q, Gomat H, Mankou GS, Loumeto J, Midoko Iponga D, Kossi Ditsouga F, Zinga Koumba R, Botsika Bobé KH, Mikala Okouyi C, Nyangadouma R, Lépengué N, Mbatchi B, Picard N. Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest?. For Ecol Manag, 2014, 312: 1-9.

[47]

Okello BD, O’Connor TG, Young TP. Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. For Ecol Manag, 2001, 142: 143-153.

[48]

Packard GC. Is logarithmic transformation necessary in allometry?. Biol J Lin Soc, 2013, 109: 476-486.

[49]

Packard GC, Boardman TJ. Model selection and logarithmic transformation in allometric analysis. Physiol Biochem Zool, 2008, 81(4): 496-507.

[50]

Parresol BR. Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci, 1999, 45(4): 573-593.

[51]

Pilli R, Anfodillo T, Carrer M. Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manag, 2006, 237: 583-593.

[52]

Přemyslovská E, Šlezingerová J, Rybníček M, Gryc V, Vavrčík H, Praus L (2007) Basic density of wood in different forest type. In: Střelcová K, Škvarenina J, Blaženec M (eds) Bioclimatology and natural hazards. International scientific conference, Poľana nad Detvou, Slovakia, September 17–20, 2007. ISBN: 97880-228-17-60-8

[53]

Pukkala T, Pohjonen V. Forest inventory and management planning in the fuelwood plantations of Ethiopia, 1989, Joensuu: University of Joensuu.

[54]

Ravindranath NH, Somashekhar BS, Gadgil M. Carbon flow in Indian forests, 1997, Dehradun: Ministry of Environment and Forest.

[55]

Roxburgh SH, Paul KI, Clifford D, England JR, Raison RJ. Guidelines for constructing allometric models for the prediction of woody biomass: how many individuals to harvest?. Ecosphere, 2015, 6(3): 1-27.

[56]

Rutishauser E, Noor’an F, Laumonier Y, Halperin J, Rufi’ie, Hergoualc’h K, Verchot L. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. For Ecol Manag, 2013, 307: 219-225.

[57]

Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A. Benchmark map of forest carbon stocks in tropical regions across three contenents. PNAS (Proc Natl Acad Sci USA), 2011

[58]

Salis SM, Assis MA, PcP Mattos, Piao ACS. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazils Pantanal wetlands based on allometric correlations. For Ecol Manag, 2006, 228: 61-68.

[59]

Santantonio D, Hermann RK, Overton WS. Root biomass studies in forest ecosystems. Pedobiologia Bd, 1997, 17: 1-31.

[60]

Slik JWF. Estimating species-specific wood density from the genus average in Indonesian trees. J Trop Ecol, 2006, 22: 481-482.

[61]

Smith RJ. Logarithmic transformation bias in allometry. Am J Phys Anthropol, 1993, 90: 215-228.

[62]

Sprugel DG. Correcting for bias in log-transformed allometric equations. Ecology, 1983, 64: 209-210.

[63]

Vieilledent G, Vaudry R, Andriamanohisoa SF, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J, Rasamoelina M. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl, 2012, 22(2): 572-583.

[64]

Wang CK. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For Ecol Manag, 2006, 222: 9-16.

[65]

Wirth C, Schumacher J, Schulze ED. Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol, 2004, 24: 121-139.

[66]

Xiang WH, Zhou J, Ouyang S, Zhang SL, Lei PF, Li JX, Deng XW, Fang X, Forrester DI. Species-specific and general allometric equations for estimating tree biomass components of subtropical forests in southern China. Eur J For Res, 2016, 135: 963-979.

[67]

Xiao X, White EP, Hooten MB, Durham SL. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 2011, 92(10): 1887-1894.

[68]

Yitebitu M, Eshetu ZA, Nune S (2010) Ethiopian forest resources: current status and future management options in view of access to carbon finances. Ethiopian Climate Change and Networking and The United Nation Development Programme, Unpublished review paper, pp 1–55

[69]

Zeng WS, Zhang LJ, Chen XY, Cheng ZC, Ma KX, Li ZH. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Can J For Res, 2017, 47: 467-475.

[70]

Zewdie M, Olsson M, Verwijst T. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass Bioenergy, 2009, 33: 421-428.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/