Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests

Diego Resende Rodrigues , Yves Rafael Bovolenta , José Antonio Pimenta , Edmilson Bianchini

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1633 -1639.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1633 -1639. DOI: 10.1007/s11676-018-0705-7
Original Paper

Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests

Author information +
History +
PDF

Abstract

In selectively logged forests, trees are more likely to expand their diameters (D) at the expense of height (H) growth, resulting in variations in H:D relationships. This study examines how selective logging affects the H:D allometric relationships of five common tree species and whether the effects vary with functional groups (shade-intolerant or shade tolerant) in seasonal semi-deciduous forests. Individuals of five species in a 3000 m2 (0.3 ha) plot were marked and heights and diameters recorded. Most of the species, with one exception, showed greater investment in diameter per increment of height compared to an unlogged forest, possibly because of the greater light available. This study shows the effects of selective logging on species populations as evidenced by increases in H:D ratios. Comparison of forest fragments with different degrees of human impact is important because it allows us to understand the differences in architectural characteristics caused by selective logging.

Keywords

Allometry / Anthropic exploitation / Ecological groups / Luminosity / Selective logging

Cite this article

Download citation ▾
Diego Resende Rodrigues, Yves Rafael Bovolenta, José Antonio Pimenta, Edmilson Bianchini. Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests. Journal of Forestry Research, 2019, 30(5): 1633-1639 DOI:10.1007/s11676-018-0705-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiba SI, Kohyama T. Tree species stratification in relation to allometry and demography in a warm-temperate rain forest. J Ecol, 1996, 84: 207-218.

[2]

Aiba M, Nakashizuka T. Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct Ecol, 2009, 23: 265-273.

[3]

Alvares CA, Stape JL, Sentelhas PC, Moraes G, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z, 2013, 22: 711-728.

[4]

Alves LF, Metzger JP. A regeneração florestal em áreas de floresta secundária na Reserva Florestal do Morro Grande, Cotia, SP. Biota Neotrop, 2006, 6: 1-26.

[5]

Alves LF, Santos FAM. Tree allometry and crown shape of four tree species in Atlantic rain forest, south-east Brazil. J Trop Ecol, 2002, 18: 245-260.

[6]

Barton AM, Fetcher N, Redhead S. The relationship between treefall gap size and light flux in a neotropical rain forest in Costa Rica. J Trop Ecol, 1989, 5: 437-439.

[7]

Batista NA, Bianchini E, Carvalho ES, Pimenta JA. Architecture of tree species of different strata developing in environments with the same light intensity in a semideciduous forest in southern Brazil. Acta Bot Bras, 2014, 28: 34-45.

[8]

Bohlman S, O’Brien S. Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. J Trop Ecol, 2006, 22: 123-136.

[9]

Brower JE, Zar JH. Field and laboratory methods for general ecology, 1984, Dubuque: Brown Publishers 226

[10]

Burton JI, Zenner EK, Frelich LE, Cornett MW. Patterns of plant community structure within and among primary and second-growth northern hardwood forest stands. For Ecol Manag, 2009, 258: 2556-2568.

[11]

Caviglione JH, Kiihl LRB, Caramori PH, Oliveira D. Cartas climáticas do Estado do Paraná, 2000, Londrina: IAPAR.

[12]

Chazdon RL, Fetcher N. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol, 1984, 72: 553-564.

[13]

Dean TJ, Long JN. Validity of constant-stress and elastic-instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot, 1986, 58: 833-840.

[14]

Dent DH, Wright SJ. The future of tropical species in secondary forests: a quantitative review. Biol Conserv, 2009, 142: 2833-2843.

[15]

Dias MC, Vieira AOS, Paiva MRC. Medri ME, Bianchini E, Shibata O, Pimenta JA. Florística e fitossociologia das espécies arbóreas das florestas da bacia do rio Tibagi. A bacia do rio Tibagi, 2002, Londrina: Universidade Estadual de Londrina 109 124

[16]

Furtado AG, Sims LP, de Campos Franci L, Pereira L, Haddad CRB, Martins FR. How a non-pioneer tree attains the canopy of a tropical semideciduous forest. Trees, 2016, 31: 93-103.

[17]

Guariguata MR, Ostertag R. Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag, 2001, 148: 185-206.

[18]

Haddad TM, Hertel MF, Bianchini E, Pimenta JA. Architecture of four tree species from different strata of a semideciduous forest in southern Brazil. Aust J Bot, 2016, 64: 89-99.

[19]

Harja D, Vincent G, Mulia R, van Noordwijk M. Tree shape plasticity in relation to crown exposure. Trees, 2012, 26: 1275-1285.

[20]

Heineman KD, Jensen E, Shapland A, Bogenrief B, Tan S, Rebarber R, Russo SE. The effects of belowground resources on aboveground allometric growth in Bornean tree species. For Ecol Manag, 2011, 261: 1820-1832.

[21]

Holbrook NM, Putz FE. Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am J Bot, 1989, 76: 1740-1749.

[22]

IBGE. Manual Técnico da Vegetação Brasileira: Manuais Técnicos em Geociências, 2012, Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística (IBGE) 272

[23]

King DA. Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology, 1986, 67: 980-990.

[24]

King DA. Allometry of saplings and understorey trees of a Panamanian forest. Funct Ecol, 1990, 4: 27-32.

[25]

King DA. The adaptive significance of tree height. Am Nat, 1990, 135: 809-828.

[26]

King DA. Allometry and life history of tropical trees. J Trop Ecol, 1996, 12: 25-44.

[27]

King DA, Clark DA. Allometry of emergent tree species from saplings to above-canopy adults in a Costa Rican rain forest. J Trop Ecol, 2011, 27: 573-579.

[28]

Kohyama T. Significance of architecture and allometry in saplings. Funct Ecol, 1987, 1: 399-404.

[29]

Kohyama T, Hotta M. Significance of allometry in tropical saplings. Funct Ecol, 1990, 4: 515-521.

[30]

Lemmon PE. A spherical densiometer for estimating forest overstory density. For Sci, 1956, 2: 314-320.

[31]

Liboni AP, Rodrigues DR, Perina BB, Rosa VPP, Bovolenta YR, Bianchini E, Pimenta JA. Relações alométricas da comunidade arbórea de diferentes áreas de uma floresta ombrófila mista do sul do Brasil. Semin Ciênc Biol Saúde, 2010, 31: 125-136.

[32]

Liebsch D, Marques MCM, Goldenberg R. How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol Conserv, 2008, 141: 1717-1725.

[33]

Lorenzi H. Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil, 2002, Instituto Plantarum: Nova Odessa 384

[34]

Martínez-Sánchez JL. Allometric variation of shade-tolerant tree species in a Mexican tropical rain forest. Rev Biol Neotrop, 2008, 5: 41-51.

[35]

McMahon T. Size and shape in biology. Science, 1973, 80(179): 1201-1204.

[36]

Niklas KJ. Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot, 1995, 75: 217-227.

[37]

O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB. Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology, 1995, 76: 1926-1939.

[38]

Oliveira MA, Santos AMM, Tabarelli M. Profound impoverishment of the large-tree stand in a hyper-fragmented landscape of the Atlantic forest. For Ecol Manag, 2008, 256: 1910-1917.

[39]

Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK. Comparative height–crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo. Am J Bot, 2007, 94: 1951-1962.

[40]

Osuri AM, Kumar VS, Sankaran M. Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. For Ecol Manag, 2014, 329: 375-383.

[41]

Poorter L, Bongers F, Sterck FJ, Wöll H. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology, 2003, 84: 602-608.

[42]

Poorter L, Bongers F, Sterck FJ, Wöll H. Beyond the regeneration phase: differentiation of height–light trajectories among tropical tree species. J Ecol, 2005, 93: 256-267.

[43]

Poorter L, Bongers L, Bongers F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology, 2006, 87: 1289-1301.

[44]

Raich JW, Khoon GW. Effects of canopy openings on tree seed germination in a Malaysian dipterocarp forest. J Trop Ecol, 1990, 6: 203-217.

[45]

Rich PM, Helenurm K, Kearns D, Morse SR, Palmer MW, Short L. Height and stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican tropical wet forest. Bull Torrey Bot Club, 1986, 1: 241-246.

[46]

Rodrigues DR, Bovolenta YR, Bianchini E, Pimenta JA. Height structure and spatial pattern of five tropical tree species in two seasonal semideciduous forest fragments with different conservation histories. Rev Árvore, 2016, 40: 395-405.

[47]

RStudio Team (2016) RStudio: integrated development for R, Version 0.98.981. Rstudio, Boston

[48]

Rutishauser E, Hérault B, Petronelli P, Sist P. Tree height reduction after selective logging in a Tropical Forest. Biotropica, 2016, 48: 285-289.

[49]

Santos HG, Jacomine PKT, Anjos LHC et al (2006) Sistema brasileiro de classificação de solos, 3rd edn. Rio de Janeiro, Embrapa Solos, p 304

[50]

Silva FC, Soares-Silva LH. Arboreal flora of the Godoy Forest State Park, Londrina. PR. Brazil. Edinburgh J Bot, 2000, 57: 107-120.

[51]

Silveira M. A vegetação do Parque Estadual Mata dos Godoy. Ecologia do Parque Estadual Mata dos Godoy, 2006, ITEDES: Londrina 19 27

[52]

Soares-Silva LH, Barroso GM (1992) Fitossociologia do estrato arbóreo da floresta na porção norte do Parque Estadual Mata dos Godoy, Londrina-PR, Brasil. In: In “Anais do VIII Congresso da Sociedade Botânica de São Paulo.”Sociedade Botânica de São Paulo, São Paulo, pp 101–112

[53]

Sposito TC, Santos FAM. Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. Am J Bot, 2001, 88: 939-949.

[54]

Sterck FJ. Crown development in tropical rain forest trees in gaps and understorey. Plant Ecol, 1999, 143: 89-98.

[55]

Sterck F, Bongers F. Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am J Bot, 1998, 85: 266.

[56]

Sterck FJ, Bongers F. Crown development in tropical rain forest trees: patterns with tree height and light availability. J Ecol, 2001, 89: 1-13.

[57]

Swaine MD, Whitmore TC. On the definition of ecological species groups in tropical rain forests. Vegetation, 1988, 75: 81-86.

[58]

Tomé M, Miglioranza E, Vilhena AHT, Fonseca EP. Composição florística e fitossociológica do Parque Estadual Mata São Francisco. Rev do Inst Florest, 1999, 11: 13-23.

[59]

Vieilledent G, Courbaud B, Kunstler G, Dhôte J-F, Clark JS. Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia, 2010, 163: 759-773.

[60]

Warton DI, Weber NC. Common slope tests for bivariate errors-in-variables models. Biom J, 2002, 44: 161.

[61]

Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc, 2006, 81: 259-291.

[62]

Warton DI, Duursma RA, Falster DS, Taskinen S. SMATR 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol, 2012, 3: 257-259.

[63]

Weiner J, Thomas SC. Competition and allometry in three species of annual plants. Ecology, 1992, 73: 648-656.

[64]

Yamada T, Ngakan OP, Suzuki E. Differences in growth trajectory and strategy of two sympatric congeneric species in an Indonesian floodplain forest. Am J Bot, 2005, 92: 45-52.

[65]

Zama MY, Bovolenta YR, Carvalho ES, Rodrigues DR, Araujo CG, Sorace MAF, Luz DG. Florística e síndromes de dispersão de espécies arbustivo-arbóreas no Parque Estadual Mata São Francisco, PR, Brasil. Hoehnea, 2012, 39: 369-378.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/