Subsurface accumulation of CaCO3 and Cl from groundwater under black locust and poplar plantations

András Szabó , Zoltán Gribovszki , Esteban Gabriel Jobbagy , Kitti Balog , András Bidló , Tibor Tóth

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1353 -1361.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1353 -1361. DOI: 10.1007/s11676-018-0700-z
Original Paper

Subsurface accumulation of CaCO3 and Cl from groundwater under black locust and poplar plantations

Author information +
History +
PDF

Abstract

When conditions are similar, more water evaporates from forest plantations than herbaceous vegetation, thereby affecting hydrological fluxes and ion transport in the soil. The vertical distribution of CaCO3 and Cl ions shifts due to afforestation. The effect of groundwater depth and clay content were studied in the Great Hungarian Plain where forest area has been increasing for decades by analyzing soil and groundwater samples from stands of black locust (Robinia pseudoacacia, 11 plots) and poplar (Populus spp., 11 plots). All study sites contained one herbaceous (control) and one or more forested plots. CaCO3 and Cl ions accumulated in the soil profile in greater quantities under tree cover than in the controls. The scale of this process largely depended on the species and on soil and ion properties. Under black locust, Cl accumulated between 1.3 and 6.3 m, with a maximum difference of 0.3 pCl unit (pCl is Cl activity, the negative of the logarithm to base 10 of the concentration of the chloride ion, determined using an ion-selective electrode, it is a dimensionless quantity.), while the difference in CaCO3 accumulation was at most 3.5% in some layers, compared to control plots. This result may be explained by the difference in the mobility of Ca+ and Cl ions. Different mechanisms were noticeable under poplar plantations due to their higher water uptake: Cl accumulation was detected below 0.9 m to the groundwater with a maximum difference of 0.5 pCl units, while CaCO3 accumulation was continuous at depths of 2.3–6.8 m with a maximum difference of 8.4%, compared to the controls. With increasing clay content, there was a discernible effect on CaCO3 and Cl accumulation under black locust, but not observed under poplars. These differences were explained by the differences in water uptake mechanisms and root patterns of the two species and the different mobility of Ca2+ and Cl ions.

Keywords

Tree plantations / Ion accumulation / Water regime / Water uptake strategy / Root structure

Cite this article

Download citation ▾
András Szabó, Zoltán Gribovszki, Esteban Gabriel Jobbagy, Kitti Balog, András Bidló, Tibor Tóth. Subsurface accumulation of CaCO3 and Cl from groundwater under black locust and poplar plantations. Journal of Forestry Research, 2019, 30(4): 1353-1361 DOI:10.1007/s11676-018-0700-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrasevits Z, G Buzás, Schiberna E. Current afforestation practices and expected trends on family farms in West Hungary. J Cent Eur Agric, 2005, 5: 297-302.

[2]

Calder IR. Water use by forests, limits and controls. Tree Physiol, 1998, 18: 625-631.

[3]

Cox G, Fischer D, Hart SC, Whitham TG. Nonresponse of native cottonwood trees to water additions during summer drought. West North Am Nat, 2005, 65(2): 175-185.

[4]

Di Gléria J, Klimes-Szmik A, Dvoracsek M (1962) Bodenphysik und Bodenkolloidik. Budapest, Hungary: Akadémiai Kiadó, H-1516, PO Box 245, p 301

[5]

Führer E, Járó Z (2005) Az erdővagyon bővítése a mezőgazdaságilag gazdaságosan nem hasznosított földterületek beerdősítésével. In: Molnár S (ed) Erdő- fa hasznosítás Magyarországon. Sopron, Hungary: University of West Hungary, 4. Bajcsy-Zsilinszky street, H-9400, pp 130–136

[6]

Gao Y, Xia J, Chen Y, Zhao Y, Kong Q, Lang Y. Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. J For Res, 2017, 28(3): 491-501.

[7]

George RJ, Nulsen RA, Ferdowsian R, Raper GP. Interactions between trees and groundwater in recharge and discharge areas—a survey of Western Australian sites. Agric Water Manag, 1999, 39(2–3): 91-113.

[8]

Gribovszki Z, Kalicz P, Szilágyi J, Kucsara M. Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations. J Hydrol, 2008, 349(1–2): 6-17.

[9]

Heuperman A. Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems. Agric Water Manag, 1999, 39: 153-167.

[10]

Illés G, Kovács G, Bidló A, Heil B. Digital soil and landsite mapping in forest management planning. Agrokémia és Talajtan, 2006, 55(1): 99-108.

[11]

Ijjász E. A fatenyészet és az altalajvíz, különös tekintettel a nagyalföldi viszonyokra. [Forest and groundwater connections in Great Hungarian Plain]. Erdészeti Kísérletek, 1939, 42: 1-107. [in Hungarian]

[12]

Járó Z. A hazai erdők vízfogyasztása. [Water use of domestic forests]. Agrártudományi közlemények, 1981, 40: 353-356. [in Hungarian]

[13]

Jobbágy EG, Jackson RB. Groundwater and soil chemical changes under phreatophytic tree plantations. J Geophys Res, 2007, 112: G02013.

[14]

Lu C, Zhao T, Shi X, Cao S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J Clean Prod, 2016, 176: 1213-1222.

[15]

Major P. Síkvidéki erdők hatása a vízháztartásra. [Effect of lowland forests on the water balance]. Hidrológiai Közlöny., 2002, 82: 319-324. [in Hungarian]

[16]

Montagnini F, Haines B, Swank WT. Soil-solution chemistry in black locust, pine/mixed-hardwoods and oak/hickory forest stands in the southern Appalachians, USA. For Ecol Manag, 1991, 40(3–4): 199-208.

[17]

Móricz N, Tóth T, Balog K, Szabó A, Rasztovits E, Gribovszki Z. Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge. Ital Soc Silvic For Ecol, 2016, 9: 696-701.

[18]

Móricz N, Tóth T, Balog K, Szabó A, Rasztovits E, Gribovszki Z. Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge. iFor Biogeosci For, 2016, 9(5): 696-701.

[19]

Naumburg E, Mata-Gonzalez R, Hunter RG, McLendon T, Martin DW. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environ Manag, 2005, 35(6): 726-740.

[20]

Nosetto MD, Jobbágy EG, Paruelo JM. Land use change and water losses. The case of grassland afforestation across a soil textural gradient in central Argentina. Glob Change Biol, 2005, 11: 1101-1117.

[21]

Nosetto MD, Jobbágy EG, Tóth T, Di Bella CM. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia, 2007, 152: 695-705.

[22]

Nosetto MD, Jobbágy EG, Tóth T, Jackson RB. Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. Glob Biogeochem Cycles, 2008

[23]

Pécsi M (1989) National Atlas of Hungary. Budapest, Hungary, Kartográfia, p 355

[24]

Priyadarshini KVR, Prins HHT, de Bie S, Heitkönig IMA, Woodborne S, Gort G, Kirkman K, Ludwig F, Dawson TE, de Kroon H. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree–grass interactions. Ecohydrology, 2015, 9: 218-228.

[25]

Rédei K, Csiha I, Zs Keserű. Black locust (Robinia pseudoacacia L.) Short-rotation crops under marginal site conditions. Acta Silvatica Lignaria Hungarica, 2011, 7: 125-132.

[26]

Rickard WH, Price KR. Uptake of tritiated groundwater by black locust trees. Northwest Sci J, 1989, 63(3): 87-89.

[27]

Schenk HJ. The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone J, 2008, 7: 1119-1124.

[28]

Snyder KA, Williams DG. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric For Meteorol, 2000, 105: 227-240.

[29]

Sümegi P, Krolopp E, Rudner E. Negyedidőszak végi őskörnyezeti változások a Kárpát-medencében térben és időben [Late Quaternary environmental changes in the Carpathian Basin in space and time]. Földtani Közlöny, 2002, 132: 5-22.

[30]

Szendrey I, Juhász M. Az akác, a hárs és az olasznyár levélkataláz-aktivitásának évszakos változása [Seasonal changes in leaf-catalase activity of black locust, linden and poplar]. Az Erdészeti és Faipari Egyetem tudományos közleményei, 1969, 1: 104-112.

[31]

Szodfridt I. Az erdő és a talajvizek kapcsolata Duna-Tisza közi hátságon. Hidrológia Közlöny, 1993, 73(1): 44-45.

[32]

Szodfridt I, Faragó S. Talajvíz és vegetáció kapcsolata a Duna-Tisza köze homokterületén [Vegetation and groundwater connections in Kiskunság sand areas] (in Hungarian). Bot Közlem, 1968, 55(1): 69-75.

[33]

Tisdale ST, Nelson WL, Beaton JD. Soil fertility and fertilizers, 1985 4 New York: Macmillan Publishing 528

[34]

Tóth T, Balog K, Szabó A, Pásztor L, Jobbágy EG, Nosetto MD, Gribovszki Z. Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas. AoB Plants, 2014, 6: plu054.

[35]

Verstraeten LMJ, Livens J. Hygroscopicity as a valuable complement in soil analysis, 1. Characterization of the hygroscopic constant. Geoderma, 1971, 6: 255-262.

[36]

Weidinger T, Bartholy J, Matyasovszky I. A globális éghajlatváltozás lokális hatásainak vizsgálata hazánkban [Investigation of local effects of the global climate change in Hungary]. Földrajzi Közlemények, 2000, 1: 75-92.

[37]

White PJ, Broadley MR. Chloride in soils and its uptake and movement within the plant: a review. Ann Bot, 2001, 88(6): 967-988.

[38]

Wilske B, Lu N, Wei L, Chen S, Zha T, Liu C, Xu W, Noormets A, Huang J, Wei Y, Chen J, Zhang Z, Ni J, Sun G, Guo K, McNulty S, John R, Han X, Lin G, Chen J. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. J Environ Manag, 2009, 90(8): 2762-2770.

[39]

Wu YZ, Huang MB, Warrington DN. Black locust transpiration responses to soil water availability as affected by meteorological factors and soil texture. Pedosphere, 2015, 25(1): 57-71.

[40]

Wuddivira MN, Robinson DA, Lebron I, Brechet L, Atwell M, De Caires S, Oatham M, Jones SB, Abdu H, Verma AK, Tuller M. Estimation of soil clay content from hygroscopic water content measurements. Soil Sci Soc Am J, 2012, 76(5): 1529-1535.

[41]

Xia J, Zhang S, Zhao X, Liu J, Chen J. Effects of different groundwater depths on the distribution characteristics of soil-Tamarix water contents and salinity under saline mineralization conditions. CATENA, 2016, 142: 166-176.

[42]

Xia J, Zhao X, Chen Y, Fang Y, Zhao Z. Responses of water and salt parameters to groundwater levels for soil columns planted with Tamarix chinensis. PLoS ONE, 2016 11 1 e0145828

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/