Decreasing the error in the measurement of the ecosystem effective leaf area index of a Pinus massoniana forest

Zhanghao Chen , Kunyong Yu , Jian Liu , Fan Wang , Yi Zhong

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1459 -1470.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (4) : 1459 -1470. DOI: 10.1007/s11676-018-0698-2
Original Paper

Decreasing the error in the measurement of the ecosystem effective leaf area index of a Pinus massoniana forest

Author information +
History +
PDF

Abstract

Decreasing the forest ecosystem leaf-area index error (LAIe) helps accurately estimate the growth and light energy utilization of aboveground foliage. Analyzing light transmission in forest ecosystems can effectively determine LAIe. The LAI-2200 plant canopy analyzer (PCA) is used extensively for rapid field-effective LAI (LAIe) measurements and primarily to measure forest canopy LAIe values. However, sometimes this parameter must also be measured in forests with small clearings. In this study, we used the LAI-2200 PCA to obtain one A-value and four B-values each for the canopy, herbaceous layer, and forest ecosystem LAIe. Field measurements showed that the three LAIe types were obviously different. In certain quadrats, the average herbaceous layer (Dicranopteris dichotoma Bernh.) LAIe apparently exceeded that of the Pinus massoniana forest ecosystem. The sources of this error were measuring and recording A-value readings for small canopies and underestimating the ecosystem LAIe. We obtained similar coefficients of determination for both the pre-recomputation and post-recomputation of the canopy and forest ecosystem LAIe (R 2 ≥ 0.96 and R 2 ≥ 0.99, respectively); thus, the error was decreased. Measuring field LAIe with the LAI-2200 PCA and recomputation should compensate for LAIe underestimation in complex forest ecosystems.

Keywords

LAI-2200 PCA / Field LAIe measurement error / Error reduction / Pinus massoniana forest

Cite this article

Download citation ▾
Zhanghao Chen, Kunyong Yu, Jian Liu, Fan Wang, Yi Zhong. Decreasing the error in the measurement of the ecosystem effective leaf area index of a Pinus massoniana forest. Journal of Forestry Research, 2019, 30(4): 1459-1470 DOI:10.1007/s11676-018-0698-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arora V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev Geophys, 2002, 40(2): 1-26.

[2]

Asner GP, Scurlock JMO, Hicke JA. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol Biogeogr, 2003, 12(3): 191-205.

[3]

Behera SK, Behera MD, Tuli R. An indirect method of estimating leaf area index in a tropical deciduous forest of India. Ecol Indicat, 2015, 58: 356-364.

[4]

Behling A, Sanquetta CR, Corte APD, Netto SP, Rodrigues AL, Caron BO, Simon AA. Tracking leaf area index and coefficient of light extinction over the harvesting cycle of black wattle. J For Res, 2016, 27(6): 1211-1217.

[5]

Bond-Lamberty B, Wang C, Gower ST, Norman J. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol, 2002, 22(14): 993-1001.

[6]

Bréda NJJ. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot, 2003 54 392 2403

[7]

Cai HY, Di XY, Jin GZ. Allometric models for leaf area and leaf mass predictions across different growing seasons of elm tree (Ulmus japonica). J For Res, 2017, 28(5): 975-982.

[8]

Chen JM. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric Forest Meteorol, 1996, 80(2–4): 135-163.

[9]

Chen YZ. General biology, 1999, Beijing: Higher Education Press 581 583

[10]

Chen JM, Black TA. Defining leaf area index for non-flat leaves. Plant, Cell Environ, 1992, 15(4): 421-429.

[11]

Chen JM, Cihlar J. Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods. IEEE T Geosci Remote, 1995, 33(3): 777-787.

[12]

Chen JM, Rich PM, Gower ST, Norman JM, Plummer S. Leaf area index of boreal forests: theory, techniques, and measurements. J Geophys Res, 1997, 102(D24): 29429-29443.

[13]

Dufrêne E, Bréda N. Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia, 1995, 104(2): 156-162.

[14]

Eriksson H, Eklundh L, Hall K, Lindroth A. Estimating LAI in deciduous forest stands. Agric Forest Meteorol, 2005, 129(1–2): 27-37.

[15]

Fang HL, Li WJ, Wei SS, Jiang C. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agric Forest Meteorol, 2014, 198–199(198): 126-141.

[16]

Ganguly S, Nemani RR, Zhang G, Hashimoto H, Milesi C, Michaelis A, Wang W, Votava P, Samanta A, Melton F, Dungan JL, Vermote E, Gao F, Knyazikhin Y, Myneni RB. Generating global leaf area index from Landsat: algorithm formulation and demonstration. Remote Sens Environ, 2012, 122(1): 185-202.

[17]

Garrigues S, Lacaze R, Baret F, Morisette JT, Weiss M, Nickeson JE, Fernandes R, Plummer S, Shabanov NV, Myneni RB, Knyazikhin Y, Yang W. Validation and intercomparison of global leaf area index products derived from remote sensing data. J Geophys Res Biogeosci, 2008, 113(G2): 1-20.

[18]

Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Mynenib RB. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric Forest Meteorol, 2008, 148(8): 1193-1209.

[19]

Geng J, Wang L, Tian QJ, Tu LL, Huang Y, Wang Y, Lv CG, Yang RR, Yang YJ. Impact of the understory on estimation of leaf area index of P. massoniana using remote sensing technology. Acta Ecol Sin, 2015, 35(18): 6007-6015.

[20]

Hu RH, Yan GJ, Mu XH, Luo JH. Indirect measurement of leaf area index on the basis of path length distribution. Remote Sens Environ, 2014, 155: 239-247.

[21]

Jiao T, Liu RG, Liu Y, Chen JM. The progress of forest understory retrieval from remote sensing. J Geo-Inform Sci, 2014, 16(4): 602-608.

[22]

Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agric Forest Meteorol, 2004, 121(1–2): 19-35.

[23]

Kostner B. Evaporation and transpiration from forests in Central Europe: relevance of patch-level studies for spatial scaling. Meteorol Atmos Phys, 2001, 76(1–2): 69-82.

[24]

Law BE, Waring RH. Remote-sensing of leaf-area index and radiation intercepted by understory vegetation. Ecol Appl, 1994, 4(2): 272-279.

[25]

Law BE, Tuyl SV, Cescatti A, Baldocchi DD. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agric Forest Meteorol, 2001, 108(1): 1-14.

[26]

Leblanc SG, Chen JM, Kwong M. Tracing radiation and architecture of canopies. TRAC MANUAL Version 2.1.3, 2005, Saint-Hubert: Natural Resources Canada.

[27]

Levy PE, Jarvis PG. Direct and indirect measurements of LAI in millet and fallow vegetation in HAPEX-sahel. Agric Forest Meteorol, 1999, 97(3): 199-212.

[28]

Liao YR, Gai YY, Yao YJ, Fan WJ, Xu XR, Yan BY. Validation methods of LAI products on the basis of scaling effect. J Remote Sens, 2015, 19(1): 134-142.

[29]

Li-Cor. LAI-2000 plant canopy analyser operating manual, 1992, Lincoln: Li-Cor.

[30]

Monk CD, McGinty DT, Day FP. The ecological importance of Kalmia latifolia and Rhododendron maximum in the deciduous forest of the southern Appalachians. Bull Torrey Bot Club, 1985, 112(1): 187-193.

[31]

Nadezhdina N, Tatarinov F, Ceulemans R. Leaf area and biomass of Rhododendron understory in a stand of Scots pine. Forest Ecol Manag, 2004, 187(2–3): 235-246.

[32]

Olivas PC, Oberbauer SF, Clark DB, Clark DA, Ryan MG, O’Brien JJ, Ordoñezg H. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agric Forest Meteorol, 2013, 177(4): 110-116.

[33]

Pisek J, Chen JM. Mapping forest background reflectivity over North America with multi-angle imaging spectroradiometer (MISR) data. Remote Sens Environ, 2009, 113(11): 2412-2423.

[34]

Ross J. The Radiation regime and architecture of plant stands, 1981, The Hague: Kluwer Academic Publishers 391

[35]

Shugart HH, Saatchi S, Hall FG. Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res Biogeosci, 2010, 115(G2): 1-16.

[36]

Stark SC, Leitold V, Wu JL, Hunter MO, de Castilho CV, Costa FR, McMahon SM, Parker GG, Shimabukuro MT, Lefsky MA, Keller M, Alves LF, Schietti J, Shimabukuro YE, Brandao DO, Woodcock TK, Higuchi N, de Camargo PB, de Oliveira RC, Saleska SR. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol Lett, 2012, 15(12): 1406-1414.

[37]

Thimonier A, Sedivy I, Schleppi P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur J Forest Res, 2010, 129(4): 543-562.

[38]

Thomas WA, Grigal DF. Phosphorus conservation by evergreenness of mountain laurel. Oikos, 1976, 27(1): 19-26.

[39]

Thomas SC, Winner WE. Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy. Can J Forest Res, 2000, 30(12): 1922-1930.

[40]

Vyas D, Mehta N, Dinakaran J, Krishnayya NSR. Allometric equations for estimating leaf area index (LAI) of two important tropical species (Tectona grandis and Dendrocalamus strictus). J For Res, 2010, 21(2): 197-200.

[41]

Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric Forest Meteorol, 2004, 121: 37-53.

[42]

Welles JM, Cohen S. Canopy structure measurement by gap fraction analysis using commercial instrument. J Exp Bot, 1996, 47(302): 1335-1342.

[43]

Wullschleger SD, Hanson PJ, Todd DE. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecol Manag, 2001, 143(1–3): 205-213.

[44]

Zhang Y, Chen JM, Miller JR. Determining digital hemispherical photograph exposure for leaf area index estimation. Agric Forest Meteorol, 2005, 133(1/4): 166-181.

[45]

Zhao J, Li J, Liu QH. Review of forest vertical structure parameter inversion based on remote sensing technology. J Remote Sens, 2013, 17(4): 697-716.

[46]

Zhu GL. Validation of grassland leaf area index and clumping index retrievals from LAI-2200. Trans Chin Soc Agric Mach, 2016, 45(7): 307-314.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/