Comparison of temporal and spatial changes in three major tropical forests based on MODIS data

Siyang Yin , Wenjin Wu , Xinwu Li

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1603 -1617.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (5) : 1603 -1617. DOI: 10.1007/s11676-018-0695-5
Original Paper

Comparison of temporal and spatial changes in three major tropical forests based on MODIS data

Author information +
History +
PDF

Abstract

Numerous studies have shown that intact tropical forests account for half of the total terrestrial sink for anthropogenic carbon dioxide. Here, we analyzed and compared changes in three main tropical forest regions from 2000 to 2014, based on time-series analysis and landscape metrics derived from moderate-resolution imaging spectroradiometer data. We examined spatial-pattern changes in percentage of tree cover and net primary production (NPP) for three tropical forest regions—Amazon basin, Congo basin, and Southeast Asia. The results show that: the Amazon basin region had the largest tropical forest area and total NPP and a better continuity of TC distribution; the Southeast Asia region exhibited a sharp decrease in NPP and had comparatively separate spatial patterns of both TC and NPP; and the Congo basin region exhibited a dramatic increase in NPP and had better aggregation of forest NPP distribution. Results also show that aggregative patterns likely correlate with high NPP values.

Keywords

Tropical forests / Global forest change / Landscape analysis

Cite this article

Download citation ▾
Siyang Yin, Wenjin Wu, Xinwu Li. Comparison of temporal and spatial changes in three major tropical forests based on MODIS data. Journal of Forestry Research, 2019, 30(5): 1603-1617 DOI:10.1007/s11676-018-0695-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anamariag T, Britaldos SF, Simoner F, Jeanpaul M. Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. For Ecol Manag, 2009, 257(4): 1219-1230.

[2]

Anaya JA, Chuvieco E, Palacios-Orueta A. Aboveground biomass assessment in Colombia: a remote sensing approach. For Ecol Manag, 2009, 257(4): 1237-1246.

[3]

Aragao L, Poulter B, Barlow JB, Anderson LO, Malhi Y, Saatchi S, Phillips OL, Gloor E. Environmental change and the carbon balance of Amazonian forests. Biol Rev, 2014, 89(4): 913-931.

[4]

Asner GP, Rudel TK, Aide TM, Defries R, Emerson R. A contemporary assessment of change in humid tropical forests. Conserv Biol, 2009, 23(6): 1386-1395.

[5]

Balmford A, Green RE, Jenkins M. Measuring the changing state of nature. Trends Ecol Evol, 2003, 18(7): 326-330.

[6]

Başkent EZ, Kadioğullari AI. Spatial and temporal dynamics of land use pattern in Turkey: a case study in İnegöl. Landsc Urban Plan, 2007, 81(4): 316-327.

[7]

Benchimol M, Peres CA. Predicting primate local extinctions within “real-world” forest fragments: a pan-neotropical analysis. Am J Primatol, 2014, 76(3): 289-302.

[8]

Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320(5882): 1444-1449.

[9]

Booth BB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Lloyd J. High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett, 2012 7 2 024002

[10]

Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJ, Silva JN. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv, 2008, 141(7): 1745-1757.

[11]

Brovkin V, Boysen L, Raddatz T, Gayler V, Loew A, Claussen M. Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J Adv Model Earth Syst, 2013, 5(1): 48-57.

[12]

Bustamante MMC, Roitman I, Aide TM, Alencar A, Anderson LO, Aragao L, Asner GP, Barlow J, Berenguer E, Chambers J, Costa MH, Fanin T, Ferreira LG, Ferreira J, Keller M, Magnusson WE, Morales-Barquero L, Morton D, Ometto J, Palace M, Peres CA, Silverio D, Trumbore S, Vieira ICG. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob Change Biol, 2016, 22(1): 92-109.

[13]

Carroll M, Townshend J, Hansen M, DiMiceli C, Sohlberg R, Wurster K. Ramachandran B, Justice CO, Abrams MJ. MODIS vegetative cover conversion and vegetation continuous fields. Land remote sensing and global environmental change, 2010, New York: Springer 725 745

[14]

Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr, 2014, 23(5): 563-573.

[15]

Chen LF, Gao YH, Liu QH, Yu T, Gu XF, Yang L, Tang Y, Zhang Y (2005) The MODIS-based NPP model and its validation. In: 2005 IEEE international geoscience and remote sensing symposium, South Korea. IEEE, pp 3028–3031

[16]

Chow J, Doria G, Kramer R, Schneider T, Stoike J. Tropical forests under a changing climate and innovations in tropical forest management. Trop Conserv Sci, 2013, 6(3): 315-324.

[17]

Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl, 2001, 11(2): 371-384.

[18]

Clark DB, Clark DA, Oberbauer SF. Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol, 2010, 16(2): 747-759.

[19]

Clay E, Moreno-Sanchez R, Torres-Rojo J, Moreno-Sanchez F. National assessment of the fragmentation levels and fragmentation-class transitions of the forests in Mexico for 2002, 2008 and 2013. Forests, 2016 7 3 48

[20]

Cleveland CC, Taylor P, Chadwick KD, Dahlin K, Doughty CE, Malhi Y, Smith WK, Sullivan BW, Wieder WR, Townsend AR. A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production. Glob Biogeochem Cycles, 2015, 29(5): 626-644.

[21]

Corlett RT. Impacts of warming on tropical lowland rainforests. Trends Ecol Evol, 2011, 26(11): 606-613.

[22]

Corlett RT. The impacts of droughts in tropical forests. Trends Plant Sci, 2016, 21(7): 584-593.

[23]

Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 2013, 494(7437): 341-344.

[24]

Crouzeilles R, Curran M. Which landscape size best predicts the influence of forest cover on restoration success? A global meta-analysis on the scale of effect. J Appl Ecol, 2016, 53(2): 440-448.

[25]

DiMiceli C, Carroll M, Sohlberg R, Huang C, Hansen M, Townshend J (2011) Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover. University of Maryland, College Park, MD, USA. http://www.landcover.org/data/vcf. Accessed 20 Sept 2016

[26]

Ersahin S, Bilgili BC, Dikmen U, Ercanli I. Net primary productivity of anatolian forests in relation to climate, 2000–2010. For Sci, 2016, 62(6): 698-709.

[27]

Feeley KJ, Wright SJ, Supardi MNN, Kassim AR, Davies SJ. Decelerating growth in tropical forest trees. Ecol Lett, 2007, 10(6): 461-469.

[28]

Forman RT, Godron M. Landscape ecology, 1986, New York: Wiley.

[29]

Franklin JF, Forman RTT. Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol, 1987, 1(1): 5-18.

[30]

Freitas SR, Lignani LB, Cabral DC. Influence of landscape features on forest maturity: the case of a fragmented landscape in the Serra Do Mar coastal forest in Brazil. Braz J Nat Conserv, 2011, 9(9): 194-199.

[31]

Gergel SE. Wulder MA, Franklin SE. New directions in landscape pattern analysis and linkages with remote sensing. Understanding forest disturbance and spatial pattern: remote sensing and GIS approaches, 2007, Boca Raton: Taylor and Francis.

[32]

Grace J, Malhi Y, Higuchi N, Meir P. Roy J, Mooney HA, Saugier B. Productivity of tropical rain forests. Terrestrial global productivity, 2001, London: Elsevier.

[33]

Grainger A. Uncertainty in the construction of global knowledge of tropical forests. Prog Phys Geogr, 2010, 34(6): 811-844.

[34]

Hansen MC, Defries RS. Detecting long-term global forest change using continuous fields of tree-cover maps from 8-km advanced very high resolution radiometer (AVHRR) data for the years 1982–99. Ecosystems, 2004, 7(7): 695-716.

[35]

He LM, Chen JM, Pan YD, Birdsey R, Kattge J. Relationships between net primary productivity and U.S. forest stand age in forests. Glob Biogeochem Cycles, 2012 26 3 GB3009

[36]

Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landsc Ecol, 2011, 26(3): 355-370.

[37]

Hessburg PF, Smith BG, Salter RB. Detecting change in forest spatial patterns from reference conditions. Ecol Appl, 1999, 9(4): 1232-1252.

[38]

Hill JL, Curran PJ. Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr, 2003, 30(9): 1391-1403.

[39]

Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci, 2013, 6(4): 268-273.

[40]

Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag, 2015, 352: 9-20.

[41]

Kim DH, Sexton JO, Townshend JR. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys Res Lett, 2015, 42(9): 3495-3501.

[42]

Kou W, Liang CX, Wei LL, Hernandez AJ, Yang XJ. Phenology-based method for mapping tropical evergreen forests by integrating of MODIS and landsat imagery. Forests, 2017 8 2 34

[43]

Kupfer JA. National assessments of forest fragmentation in the US. Glob Environ Change, 2006, 16(1): 73-82.

[44]

Kupfer JA, Runkle JR. Edge-mediated effects on stand dynamic processes in forest interiors: a coupled field and simulation approach. Oikos, 2003, 101(1): 135-146.

[45]

Kwon Y, Larsen CPS. An assessment of the optimal scale for monitoring of MODIS and FIA NPP across the eastern USA. Environ Monit Assess, 2013, 185(9): 7263-7277.

[46]

Laurance WF, Laurance SG, Delamonica P. Tropical forest fragmentation and greenhouse gas emissions. For Ecol Manag, 1998, 110(1–3): 173-180.

[47]

Li HB, Wu JG. Use and misuse of landscape indices. Landsc Ecol, 2004, 19(4): 389-399.

[48]

Lloret F, Calvo E, Pons X, Díaz-Delgado R. Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol, 2002, 17(8): 745-759.

[49]

Loveland TR, Belward AS. The IGBP-DIS global 1 km land cover data set, DISCover: first results. Int J Remote Sens, 1997, 18(15): 3289-3295.

[50]

MacDicken K, Jonsson Ő, Piňa L, Maulo S, Adikari Y, Garzuglia M, Lindquist E, Reams G, D’Annunzio R. The global forest resources assessment 2015: how are the world’s forests changing, 2015, Rome: Food and Agriculture Organization of the United Nations

[51]

Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol, 2000, 15(8): 332-337.

[52]

Mayaux P, Achard F, Malingreau JP. Global tropical forest area measurements derived from coarse resolution satellite imagery: a comparison with other approaches. Environ Conserv, 1998, 25(1): 37-52.

[53]

Mayaux P, Holmgren P, Achard F, Eva H, Stibig H, Branthomme A. Tropical forest cover change in the 1990s and options for future monitoring. Philos Trans R Soc B Biol Sci, 2005, 360(1454): 373-384.

[54]

McGarigal K (2014) FRAGSTATS help. Retrieved from https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf. Accessed 15 Nov 2016

[55]

McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 14 Nov 2016

[56]

Meyfroidt P, Lambin EF. Global forest transition: prospects for an end to deforestation. Ann Rev Environ Resour Soc Sci Electron Publ, 2011, 36: 343-371.

[57]

Michaela W, Joannec W, Margarete A, Nicolee S, Nicholasc C. Forest fragmentation, structure, and age characteristics as a legacy of forest management. For Ecol Manag, 2009, 258(9): 1938-1949.

[58]

Millington AC, Velez-Liendo XM, Bradley AV. Scale dependence in multitemporal mapping of forest fragmentation in Bolivia: implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J Photogramm Remote Sens, 2003, 57(4): 289-299.

[59]

Morton DC, DeFries RS, Shimabukuro YE, Anderson LO, Del Bon Espírito-Santo F, Hansen M, Carroll M. Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interact, 2005, 9(8): 1-22.

[60]

Nagendra H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl Geogr, 2002, 22(2): 175-186.

[61]

Newbold T, Hudson LN, Phillips HRP, Hill SLL, Contu S, Lysenko I, Blandon A, Butchart SHM, Booth HL, Day J, De Palma A, Harrison MLK, Kirkpatrick L, Pynegar E, Robinson A, Simpson J, Mace GM, Scharlemann JPW, Purvis A. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc R Soc B Biol Sci, 2014 281 1792 20141371

[62]

Oliveras I, Malhi Y. Many shades of green: the dynamic tropical forest–savannah transition zones. Philos Trans R Soc B Biol Sci, 2016 371 1703 15

[63]

Pan YD, Birdsey R, Hom J, McCullough K, Clark K. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales. Ecol Appl, 2006, 16(1): 125-132.

[64]

Parresol BR. Derivation of two well-behaved theoretical contagion indices and their sampling properties and application for assessing forest landscape diversity. Nat Resour Model, 2011, 24(1): 61-101.

[65]

Peng DL, Zhang B, Wu CY, Huete AR, Gonsamo A, Lei LP, Ponce-Campos GE, Liu XJ, Wu YH. Country-level net primary production distribution and response to drought and land cover change. Sci Total Environ, 2017, 574: 65-77.

[66]

Petrosyan A, Karathanassi V. Review article of landscape metrics based on remote sensing data. J Environ Sci Eng, 2011, 5(11): 1542-1560.

[67]

Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núnez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998, 282(5388): 439-442.

[68]

Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I. Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc, 2008 13 2 51

[69]

Potter C, Klooster S, Hiatt C, Genovese V, Castilla-Rubio JC. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environ Res Lett, 2011 6 3 034024

[70]

Potter C, Klooster S, Genovese V. Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Change, 2012, 115(2): 365-378.

[71]

Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A. Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Model, 2011, 222(12): 1986-1997.

[72]

Rafique R, Zhao F, de Jong R, Zeng N, Asrar GR. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: a model-data comparison. Remote Sens, 2016 8 3 177

[73]

Ramachandran B, Justice CO, Abrams MJ. Land remote sensing and global environmental change: NASA’s earth observing system and the science of ASTER and MODIS, 2010, New York: Springer.

[74]

Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P. Estimating the risk of Amazonian forest dieback. New Phytol, 2010, 187(3): 694-706.

[75]

Saunders DA, Hobbs RJ, Margules CR. Biological consequences of ecosystem fragmentation: a review. Conserv Biol, 1991, 5(1): 18-32.

[76]

Schmidt M, Jochheim H, Kersebaum KC, Lischeid G, Nendel C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes—a review. Agric For Meteorol, 2017, 232: 659-671.

[77]

Schulz C, Koch R, Cierjacks A, Kleinschmit B. Land change and loss of landscape diversity at the Caatinga phytogeographical domain—analysis of pattern-process relationships with MODIS land cover products (2001–2012). J Arid Environ, 2017, 136: 54-74.

[78]

Sexton JO, Noojipady P, Song X, Feng M, Song DX, Kim DH, Anand A, Huang C, Channan S, Pimm SL, Townshend JR. Conservation policy and the measurement of forests. Nat Clim Change, 2015, 6: 192-196.

[79]

Sfair JC, Arroyo-Rodriguez V, Santos BA, Tabarelli M. Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol Appl, 2016, 26(6): 1816-1826.

[80]

Shen Y, Yu SX, Lian JY, Shen H, Cao HL, Lu HP, Ye WH. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci Rep, 2016, 6: 25304.

[81]

Sloan S, Sayer JA. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manag, 2015, 352: 134-145.

[82]

Spracklen BD, Kalamandeen M, Galbraith D, Gloor E, Spracklen DV. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE, 2015 10 12 e0143886

[83]

Sterck F, Anten NPR, Schieving F, Zuidema PA. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming. Front Plant Sci, 2016, 7: 607.

[84]

Toivonen JM, Kessler M, Ruokolainen K. Accessibility predicts structural variation of Andean Polylepis forests. Biodivers Conserv, 2011, 20(8): 1789-1802.

[85]

Tum M, Zeidler JN, Gunther KP, Esch T. Global NPP and straw bioenergy trends for 2000–2014. Biomass Bioenerg, 2016, 90: 230-236.

[86]

Tyukavina A, Baccini A, Hansen MC, Potapov PV, Stehman SV, Houghton RA, Krylov AM, Turubanova S, Goetz SJ. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ Res Lett, 2015 10 7 74002

[87]

van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT. CO2 emissions from forest loss. Nat Geosci, 2009, 2(11): 737-738.

[88]

Wheeler CE, Omeja PA, Chapman CA, Glipin M, Tumwesigye C, Lewis SL. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For Ecol Manag, 2016, 373: 44-55.

[89]

With KA. Assessing the risk of invasive spread in fragmented landscapes. Risk Anal, 2004, 24(4): 803-815.

[90]

Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ, 2002, 83(1–2): 31-49.

[91]

Wu JG, Hobbs R. Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol, 2002, 17: 355-365.

[92]

Wulder MA, White JC, Andrew ME, Seitz NE, Coops NC. Forest fragmentation, structure, and age characteristics as a legacy of forest management. For Ecol Manag, 2009, 258(9): 1938-1949.

[93]

Wulder MA, White JC, Han T, Coops NC, Cardille JA, Holland T, Grills D. Monitoring Canada’s forests. Part 2: national forest fragmentation and pattern. Can J Remote Sens, 2011, 34(6): 563-584.

[94]

Xiong XX, Angal A, Sun JQ, Choi TY, Johnson E. On-orbit performance of MODIS solar diffuser stability monitor. J Appl Remote Sens, 2014 8 1 183514

[95]

Zhao M, Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329(5994): 940-943.

[96]

Zhao M, Running SW. Response to comments on Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2011 333 6046 1093–1093

[97]

Zhao WQ, Zhao X, Tang BJ, Wu DH, Wei H (2015) Solar radiation contributed to the 2005 and 2010 Amazon droughts. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), Italy. IEEE, pp 1964–1967

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/