Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape

Ane Zubizarreta-Gerendiain , Timo Pukkala , Heli Peltola

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (3) : 879 -889.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (3) : 879 -889. DOI: 10.1007/s11676-018-0693-7
Original Paper

Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape

Author information +
History +
PDF

Abstract

Many forest-dwelling species are dependent on deadwood. Sources of deadwood include competition- and senescence-related mortality of trees, and various damages. This study described a methodology for predicting the effect of wind damage on the amount of deadwood and suitability of the forest for saproxylic species. The methodology was used in a forested boreal landscape of 360 ha to analyze the effects of wind damage on the habitat quality for 27 groups of saproxylic species differing in their requirements for the species, size and decay stage of deadwood objects. A reference plan maximized net present value (MaxNPV) while others either minimized or maximized height differences between adjacent stands. Maximization of height differences resulted in high amount of wind damage and deadwood while minimizing height differences minimized wind damage and the amount of damage-related deadwood. The fourth plan maximized the average habitat suitability index (HSI) of the 27 groups of saproxylic species. The plans were compiled with and without even-flow harvesting constraints for three 10-year periods. Maximization of height differences between adjacent stands resulted in higher HSI values than obtained in the MaxNPV plan or in the plan than minimized height differences between adjacent stands. The average HSI of shade-demanding species correlated negatively with the amount of harvested timber. No strong correlations were found for light-demanding and indifferent species.

Keywords

Biodiversity / Habitat suitability index / Deadwood / Wind disturbance / Optimization / Simulated annealing

Cite this article

Download citation ▾
Ane Zubizarreta-Gerendiain, Timo Pukkala, Heli Peltola. Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape. Journal of Forestry Research, 2019, 30(3): 879-889 DOI:10.1007/s11676-018-0693-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Äijälä O, Koistinen A, Sved J, Vanhatalo K, Väisänen P (eds) (2014) Hyvän metsänhoidon suositukset—Metsänhoito (Recommendations for good silviculture). Publications of the Forestry Development Centre Tapio. 264 p. ISBN 978-952-6612-22-5 (in Finnish)

[2]

Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-fries H, Foullois N, Müller J. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett, 2015, 8(4): 272-281.

[3]

Finnish Statistical Yearbook of Forestry (2014) Finnish Forest Research Institute

[4]

Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Mueller J. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol, 2013, 27: 605-614.

[5]

Gregow H. Impacts of strong winds, heavy snow loads and soil frost conditions on the risks to forests in Northern Europe. Contrib Finn Meteorol Inst, 2013, 94: 1-178.

[6]

Heinonen T, Pukkala T, Ikonen V-P, Peltola H, Venäläinen A, Dupont S. Integrating the risk of wind damage into forest planning. For Ecol Manag, 2009, 258: 1567-1577.

[7]

Junninen K, Similä M, Kouki J, Kotiranta H. Assemblages of wood inhabiting fungi along the gradients of succession and naturalness in boreal pine dominated forests in Fennoscandia. Ecography, 2006, 29: 75-83.

[8]

Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B Biol Sci, 2008, 363(1501): 2341-2351.

[9]

Kouki J, Tikkanen OP (eds) (2007) Uhanalaisten lahopuulajien elinympäristöjen turvaaminen suojelualueilla ja talousmetsissä (Conservation of Threatened Saproxylic Species Assemblages in Eastern Finland) Suomen Ympäristö—The Finnish Environment, 24/2007:1–104 (in Finnish with English summary)

[10]

Kulakowski D, Seidl R, Holeksa J, Kuuluvainen T, Nagel T, Panayotov M, Svoboda M, Thorn S, Vacchiano G, Whitlock C, Wohlgemuth T, Bebi P. A walk on the wild side: disturbance dynamics and the conservation and management of European mountain forest ecosystems. For Ecol Manag, 2017, 388: 120-131.

[11]

Kuuluvainen T. Introduction disturbance dynamics in boreal forests: defining the ecological basis of restoration and management of biodiversity. Silva Fenn, 2002, 36(1): 5-11.

[12]

Laasasenaho J. Taper curve and volume equations for pine spruce and birch. Commun Inst For Fenn, 1982, 108: 1-74.

[13]

Laiho O. Metsiköiden alttius tuulituhoille Etelä-Suomessa [Susceptibility of forest stands to wind throw in Southern Finland]. Folia For, 1987, 706: 1-24. (in Finnish with English summary)

[14]

Lassauce A, Paillet Y, Jactel H, Bouget C. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Ind, 2011, 11: 1027-1039.

[15]

Lassauce A, Lieutier F, Bouget C. Woodfuel harvesting and biodiversity conservation in temperate forests: effects of logging residue characteristics on saproxylic beetle assemblages. Biol Conserv, 2012, 147: 204-212.

[16]

Lockwood C, Moore T. Harvest scheduling with spatial constraints: a simulated annealing approach. Can J For Res, 1992, 23: 468-478.

[17]

Martikainen P, Siitonen J, Punttila P, Kaila L, Rauh J. Species richness of Coleptera in mature managed and old-growth boreal forests in southern Finland. Biol Concerv, 2000, 94: 199-209.

[18]

Mazziotta A, Mönkkönen M, Strandman H, Routa J, Tikkanen O-P, Kellomäki S. Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations. Eur J For Res, 2014, 133: 405-421.

[19]

Mazziotta A, Triviño M, Tikkanen O-P, Kouki J, Strandman H, Mönkkönen M. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest. Glob Change Biol, 2015, 21: 637-651.

[20]

Meilby H, Niels Strange N, Thorsen BJ. Optimal spatial harvest planning under risk of windthrow. For Ecol Manag, 2001, 149(1–3): 15-31.

[21]

Mönkkönen M. Managing Nordic boreal forest landscapes for biodiversity: ecological and economic perspectives. Biodivers Conserv, 1999, 8: 85-99.

[22]

Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res, 2010, 129: 981-992.

[23]

Peltola H, Kellomäki S, Väisänen H, Ikonen V-P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce and birch. Can J For Res, 1999, 29: 647-661.

[24]

Penttilä R, Siitonen J, Kuusinen M. Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Conserv, 2004, 117: 271-283.

[25]

Pukkala T. Dealing with ecological objectives in the Monsu planning system. Silva Lusitana, 2004, Special issue: 1-15.

[26]

Pukkala T. Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoille. Metsätieteen aikakauskirja, 2005, 3(2005): 311-322.

[27]

Pukkala T. Optimising the semi-continuous cover forestry of Finland. Allgemaine Forst und Jagdzeitung, 2006, 1677: 141-149.

[28]

Pukkala T (2008) Integrating multiple services in the numerical analysis of landscape design. In: von Gadow K, Pukkala T (eds) Designing green landscapes. Managing forest ecosystems, vol 15, pp 137–167

[29]

Pukkala T, Lähde E, Laiho O. Species interactions in the dynamics of even- and uneven-aged boreal forests. J Sustain For, 2013, 32: 1-33.

[30]

Rummukainen A, Alanne H, Mikkonen E. Wood procurement in the pressure of change—resource evaluation model till year 2010. Acta For Fenn, 1995, 248: 1-9.

[31]

Seidl R, Rammer W, Blennow K. Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ Model Softw, 2014, 51: 1-11.

[32]

Siitonen J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull, 2001, 49: 11-42.

[33]

Similä M, Kouki J, Martikainen P. Saproxylic beetles in managed and seminatural Scots pine forests: quality of dead wood matters. For Ecol Manag, 2003, 174: 365-381.

[34]

Stadelmann G, Bugmann H, Meier F, Wermelinger B, Bigler C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For Ecol Manag, 2013, 305: 273-281.

[35]

Tarasov ME, Birdsey RA. Decay rate and potential storage of coarse woody debris in the Leningrad region. Ecol Bull, 2001, 49: 137-147.

[36]

Tarp P, Helles F. Spatial optimisation by simulated annealing and linear programming. Scand J For Res, 1997, 12: 390-402.

[37]

Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev, 2016, 91: 760-781.

[38]

Thorn S, Bässler C, Gottschalk T, Hothorn T, Bussler H, Raffa K, Müller J. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages. PLoS ONE, 2014, 9(7): 1-8.

[39]

Thorn S, Bässler C, Svoboda M, Müller J. Effects of natural disturbances and salvage logging on biodiversity—lessons from the Bohemian forest. For Ecol Manag, 2017, 388: 113-119.

[40]

Tikkanen O-P, Martikainen P, Hyvärinen E, Junninen K, Kouki J. Red-listed boreal forest species of Finland: associations with forest structure, tree species and decaying wood. Ann Zool Fenn, 2006, 43: 373-383.

[41]

Tikkanen O-P, Heinonen T, Kouki J, Matero J. Habitat suitability models of saproxylic red-listed boreal forest species in long-term matrix management: cost-effective measures for multi-species conservation. Biol Conserv, 2007, 140: 359-372.

[42]

Zeng H, Peltola H, Talkkari A, Venäläinen A, Strandman H, Kellomäki S, Wang K. Influence of clear-cutting on the risk of wind damage at forest edges. For Ecol Manag, 2004, 203: 77-88.

[43]

Zeng H, Pukkala T, Peltola H. The use of heuristic optimisation in risk management of wind damage in forest planning. For Ecol Manag, 2007, 241: 189-199.

[44]

Zubizarreta-Gerendiain A, Pellikka P, Garcia-Gonzalo J, Ikonen V-P, Peltola H. Factors affecting wind and snow damage of individual trees in a small management unit in Finland: assessment based on inventoried damage and mechanistic modelling. Silva Fenn, 2012, 46(2): 181-196.

[45]

Zubizarreta-Gerendiain A, Pukkala T, Peltola H. Effects of wind damage on the optimal management of boreal forests under the current and changing climatic conditions. Can J For Res, 2017, 47(2): 246-256.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/