Dendrochronology and climatic signals in the wood of Nectandra oppositifolia from a dense rain forest in southern Brazil

Daniela Granato-Souza , Eduardo Adenesky-Filho , Karin Esemann-Quadros

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (2) : 545 -553.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (2) : 545 -553. DOI: 10.1007/s11676-018-0687-5
Original Paper

Dendrochronology and climatic signals in the wood of Nectandra oppositifolia from a dense rain forest in southern Brazil

Author information +
History +
PDF

Abstract

Nectandra is one of the most representative genera of Lauraceae in the subtropical Atlantic Forest of Brazil. The objective of this work was to study the dendrochronological potential of Nectandra oppositifolia Nees and Mart. from two sites in Santa Catarina State in southern Brazil. A tree-ring chronology of 34 trees was developed. The time span ranged from 1843 to 2013. The oldest and youngest trees were 171 and 47 years-old and the average length of the series was 103 years. Average diameter and annual increment were 20.64 cm and 0.74 mm a−1; diameter and age were unrelated. The species has good dendrochronological potential with an intercorrelation of 0.61 between sites, indicating the existence of a synchronous pattern in the development of the trees. The climate response of the species could be seen by negative tree growth effects for previous hot and current rainy growth seasons.

Keywords

Climate response / Dendroclimatology / Atlantic forest / Growth rings / Lauraceae

Cite this article

Download citation ▾
Daniela Granato-Souza, Eduardo Adenesky-Filho, Karin Esemann-Quadros. Dendrochronology and climatic signals in the wood of Nectandra oppositifolia from a dense rain forest in southern Brazil. Journal of Forestry Research, 2019, 30(2): 545-553 DOI:10.1007/s11676-018-0687-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alves ES, Angyolossy-Alfonso V. Ecological trends in the wood anatomy of some Brazilian species, 1. Growth rings and vessels. IAWA J, 2000, 21: 3-30.

[2]

Andreacci F, Botosso PC, Galvão F. Sinais climáticos em anéis de crescimento de Cedrela fissilis em diferentes tipologias de florestas ombrófilas do sul do Brasil. Floresta, 2013, 44(2): 323-332.

[3]

Ayoade JO. Introdução a climatologia para os trópicos, 2007 12 Rio de Janeiro: Bertrand Brasil 332

[4]

Backes P, Irgang B. Mata Atlântica. As árvores e a paisagem, 2004, Porto Alegre: Paisagem do Sul 396

[5]

Barros CF, Ferreira-Marcon ML, Callado CH, Lima HRP, Cunha M, Marquete O, Costa CG. Tendências ecológicas na anatomia da madeira de espécie da comunidade arbórea da Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Rodriguésia, 2006, 57(3): 443-460.

[6]

Bechara FC, Tiepo EN, Reis A. Contribuição ao manejo sustentável do complex ferruginoso Nectandra na Floresta Nacional de Ibirama, SC. Rev Árvore, 2009, 33: 125-132.

[7]

Blasing TJ, Solomon AM, Duvick DN. Response function revisited. Tree Ring Bull, 1984, 44: 1-15.

[8]

Botoso PC, Vetter RE, Tomazelo-Filho M. Roig FA. Periodicidade e taxa de crescimento de árvores de cedro (Cedrela odorata L., Meliaceae), jacareúba (Callophyllum angulare A.C. Smith, Clusiaceae) e muirapiranga (Eperua bijuga Mart. ex Benth, Leg., Caesalpinoideae) de floresta de Terra Firme, em Manaus-AM. Dendrocronologia en América Latina, 2000, Mendoza: Ediunc 357 380

[9]

Brienen R, Zuidema P. Relating tree growth to rainfall in Bolivian rainforests: a test for six species using tree ring analysis. Oecologia, 2005, 146: 1-12.

[10]

Callado C, Guimarães RC. Estudo dos anéis de crescimento de Schizolobium parahyba (Leguminosae: Caesalpinioideae) após episódio de mortalidade em Ilha Grande, Rio de Janeiro. Rev Bras Bot, 2010, 33: 85-91.

[11]

Callado C, Neto SS, Scarano F, Costa C. Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees, 2001, 15: 492-497.

[12]

CEOPS/FURB (2015) Centro de Operação do Sistema de Alerta 392 da Bacia Hidrográfica do Rio Itajaí/Universidade Regional de Blumenau. http://ceops.furb.br. Accessed 03 July 2015

[13]

Clark DA. Detecting tropical forests responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica, 2007, 39: 4-19.

[14]

Clark DA, Clark DB. Climate-induced annual variation in canopy tree growth in a Costa Rican tropical rain forest. Tree Ring Bull, 1994, 82: 865-872.

[15]

Cook ER. A time series analysis approach to tree-ring standardization, 1985, Tucson: University of Arizona, Tucson 171

[16]

Cook ER, Peters K. The smoothingspline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull, 1981, 41: 45-53.

[17]

Costa MS, Ferreira KEB, Botosso PC, Callado CH. Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia, 2015, 36: 23-32.

[18]

Dünisch O. Influence of the El-niño southern oscillation on cambial growth of Cedrela fissilis Vell. in tropical and subtropical Brazil. J Appl Bot Food Qual, 2005, 79: 5-11.

[19]

EMBRAPA-Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos, 2006 2 Rio de Janeiro: Emprapa-Centro Nacional de Pesquisa de Solos 306

[20]

Feeley KJ, Joseph Wright S, Nur Supardi MN, Kassim AR, Davies SJ. Decelerating growth in tropical forest trees. Ecol Lett, 2007, 10: 461-469.

[21]

Fritts HC. Tree rings and climate, 1976, London: Academic Press 567

[22]

Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol, 2010, 187: 647-665.

[23]

Gamboa CCS, Rozendaal DMA, Ceccantini G, Angyalossy V, Van Der Borg K, Zuidema PA. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees, 2011, 25: 17-27.

[24]

Gandolfi S, Leitão-Filho HF, Bezerra CLF. Levantamento florístico e caráter sucessional das espécies arbustivo-arbóreas de uma floresta mesófila semidecídua no município de Guarulhos, SP. Rev Bras Bot, 1995, 55: 753-767.

[25]

Hammer Ø, Harper D, Ryan P. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron, 2001, 4: 01-09.

[26]

Higuchi P, Reis MGF, Reis GG, Pinheiro AL, Silva CT, Oliveira CHR. Composição florística da regeneração natural de espécies arbóreas ao longo de oito anos em um fragmento de Floresta Estacional Semidecidual, em Viçosa, MG. Rev Árvore, 2006, 30(6): 893-904.

[27]

Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull, 1983, 43: 69-78.

[28]

Holmes RL. Dendrochronology program library, 2001, Tucson: Available from the Laboratory of Tree-Ring Research, University of Arizona.

[29]

IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull, 1989, 10: 219-232.

[30]

INMET (2015) Instituto Nacional de Meteorologia. Séries meteorológicas 460 históricas para o Brasil. http://www.inmet.gov.br/portal/. Accessed 05 Oct 2015

[31]

Latorraca JVF, Souza MT, Silveira LD, Silva AB, Ramos LMA. Dendrocronologia de árvores de Schizolobium parahyba (Vell.) S.F. Blake de ocorrência na Rebio de Tinguá-RJ. Rev Árvore, 2015, 39: 385-394.

[32]

Lingner DV, Schorn LA, Vibrans AC, Meyer L, Sevegnani L, Gasper AL, Sobral MG, Kruger A, Klemz G, Schmidt R, Junior CA. Vibrans AC, Sevegnani L, Gasper AL, Lingner DV. Fitossociologia do componente arbóreo/arbustivo da floresta ombrófila densa em Santa Catarina. Inventário Florístico Florestal de Santa Catarina. Floresta Ombrófila Densa, 2013, Blumenau: Edifurb 159 200

[33]

Lisi CS, Tomazello-Filho M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA. Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J, 2008, 29: 189-207.

[34]

Lovejoy S, Schertzer D. Multifractals, cloud radiances and rais. J Hydrol, 2006, 322: 59-88.

[35]

Mafra AD. Aconteceu nos ervais: A disputa territorial entre Paraná e Santa Catarina pela exploração da erva mate - região sul do Vale do Rio Negro, 2008, Brazil: Universidade do Contestado, Canoinhas 150

[36]

Maia TM. Estimativa da idade, avaliação do incremento e análise dendrocronológica de Cedrela fissilis Vell. (Meliaceae) em Santa Catarina, 2013, Brazil: Universidade Regional de Blumenau, Blumenau 73

[37]

Mérian P, Pierrat JC, Lebourgeois F. Effect of sampling effort on the regional chronology statistics and climate–growth relationships estimation. Dendrochronologia, 2013, 31: 58-67.

[38]

Molion LCB. Figueiredo T, Ribeiro LF, Ribeiro AC, Fernandes LF. Variabilidade e alterações climáticas. Clima e recursos naturais, 2010, Bragança: Instituto Politécnico de Bragança 17 41

[39]

Oliveira JM, Roig FA, Pillar VD. Climatic signals in tree-rings of Araucaria angustifolia in the southern Brazilian highlands. Aust Ecol, 2010, 35: 134-147.

[40]

Pinto Sobrinho F de A, Christo AG, Guedes-Bruni RR, Silva AF. Composição florística e estrutura de um fragmento de floresta estacional semidecidual Aluvial em Viçosa (MG). Rev Floresta, 2009, 39: 793-805.

[41]

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C, 1992 2 Cambridge: Cambridge University Press.

[42]

Quinet A. Lauraceae na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia, 2006, 57(3): 543-568.

[43]

Rozendal DMA, Zuidema PA. Dendroecology in the tropics: a review. Trees, 2011, 25(1): 3-16.

[44]

Schöngart J, Piedade MTF, Ludwigshausen S, Hornas V, Worbes M. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol, 2002, 18: 581-597.

[45]

Schweingruber FH. Wood structure and environment, 2007, Berlin: Springer 279

[46]

Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika, 1965, 52: 591-611.

[47]

Shimamoto CY, Botosso PC, Amano E, Marques MCM. Stem growth rhythms in trees of a tropical rainforest in Southern Brazil. Trees, 2015, 30: 99-111.

[48]

Spathelf P, Tomazello-Filho M, Tonini H. Dendroecological analysis of Ocotea pulchella and Nectandra megapotamica on two sites near Santa Maria, Rio Grande do Sul (Brazil). Floresta, 2010, 40: 777-788.

[49]

Speer JH. Fundamentals of tree-ring research, 2010, Arizona: The University of Arizona Press 509

[50]

Stahle DW. Useful strategies for development of tropical tree-ring chronologies. IAWA J, 1999, 20: 249-253.

[51]

Trenberth KE. The definition of El Niño. Bull Am Meteor Soc, 1997, 78: 2771-2777.

[52]

Vibrans AC, Sevegnani L, Gasper AL, Lingner DV. Inventário Florístico Florestal de Santa Catarina. Floresta Ombrófila Densa, 2013, Blumenau: Edifurb 576

[53]

Wigley TM, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteorol, 1984, 23: 201-213.

[54]

Worbes M. Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Vezenuela. J Ecol, 1999, 87: 391-403.

[55]

Worbes M. One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia, 2002, 20: 217-231.

[56]

Zanon MMF, Goldenberg R, Moraes PLR. O gênero Nectandra Rol. ex Rottb. (Lauraceae) no Estado do Paraná, Brasil. Act Bot Bras, 2009, 23: 22-35.

[57]

Zuidema PA, Baker PJ, Groenendijk P, Schippers P, Van der Sleen P, Vlam M, Sterck F. Tropical forests and global change: filling knowledge gaps. Trends Plant Sci, 2013, 18: 413-419.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/