Over expression of TaFer gene from Tamarix androssowii improves iron and drought tolerance in transgenic Populus tomentosa

Bo Zhao , Jingli Yang , Wenjing Yao , Boru Zhou , Wei Zheng , Tingbo Jiang

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (1) : 171 -181.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (1) : 171 -181. DOI: 10.1007/s11676-018-0625-6
Original Paper

Over expression of TaFer gene from Tamarix androssowii improves iron and drought tolerance in transgenic Populus tomentosa

Author information +
History +
PDF

Abstract

Ferritin, a universal intracellular protein, can store large amounts of iron and improve plant resistance to abiotic and biotic stress. In this study, a ferritin gene (TaFer) from Tamarix androssowii Litv. was transferred into Populus tomentosa Carr. cv ‘BJR01’ via Agrobacterium. Six independent transgenic lines were obtained with a tolerance to kanamycin and three were randomly selected for further analysis. The PCR and RT-PCR results indicate that the TaFer gene had been integrated into the poplar genome. The effect of the gene on abiotic stress tolerance was tested, and the results show that transgenic plants improve growth, had higher chlorophyll and lower MDA contents, and higher relative electrical conductivity, fewer changes of SOD and POD activities, higher iron content, higher root ferric reductase activity and lower levels of ROS accumulation and cell death in response to drought, Fe-insufficient or Fe-excess tolerance. These results indicate that the TaFer gene can improve abiotic stress tolerance in transgenic Populus tomentosa.

Keywords

Tarmarix andnssowii / Ferritin / Iron / Genetic transformation / Stress resistance

Cite this article

Download citation ▾
Bo Zhao, Jingli Yang, Wenjing Yao, Boru Zhou, Wei Zheng, Tingbo Jiang. Over expression of TaFer gene from Tamarix androssowii improves iron and drought tolerance in transgenic Populus tomentosa. Journal of Forestry Research, 2019, 30(1): 171-181 DOI:10.1007/s11676-018-0625-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán AF. Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem, 2011, 49: 471-482.

[2]

Agastian P, Kingsley SJ, Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 2000, 38: 287-290.

[3]

Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol, 2001, 33: 940-959.

[4]

Andrews SC, Harrison PM, Yewdall SJ, Arosio P, Levi S, Bottke W, von Darl M, Briat JF, Laulhère JP, Lobreaux S. Structure, function, and evolution of ferritins. J Inorg Biochem, 1992, 47: 161-174.

[5]

Becana M, Moran JF, Iturbe-Ormaetxe I. Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil, 1998, 201: 137-147.

[6]

Bowler C, Montagu MV, Inzé D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83-116.

[7]

Briat JF. Roles of ferritin in plants. J Plant Nutr, 1996, 19: 1331-1342.

[8]

Briat JF. Montagu M, Inzé D. Metal iron mediated oxidative stress and its control. Oxidative stress in plants, 2002, London: Taylor and Francis 171 189

[9]

Briat JF, Fobis-Loisy I, Grignon N, Lobréaux S, Pascal N, Savino G, Thoiron S, von Wirén N, Van Wuytswinkel O. Cellular and molecular aspects of iron metabolism in plants. Biol Cell, 1995, 84: 69-81.

[10]

Briat JF, Duc C, Ravet K, Gaymard F. Ferritins and iron storage in plants. Biochim Biophys Acta, 2009, 1800: 806-814.

[11]

Chen Y, Barak P. Iron nutrition of plants in calcareous soils. Adv Agron, 1982, 135: 217-240.

[12]

Curie C, Briat JF. Iron transport and signaling in plants. Annu Rev Plant Biol, 2003, 54: 183-206.

[13]

Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol, 1999, 17(2): 192-196.

[14]

Du NX, Liu X, Li Y, Chen SY, Zhang JS, Ha D, Deng WG, Sun CK, Zhang YZ, Pijut PM. Genetic transformation of Populustomentosa to improve salt tolerance. Plant Cell Tissue Organ Cult, 2012, 108: 181-189.

[15]

Fridovich I. Superoxide readical and superoxide dismutases. Annu Rev Biochem, 1995, 64: 250-272.

[16]

Galaris D, Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci, 2008, 45: 1-23.

[17]

Goto F, Yoshihara T, Saiki H. Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res, 1998, 7: 173-180.

[18]

Goto F, Yoshihara T, Masuda T, Takaiwa F. Genetic improvement of iron content and stress adaptation in plants using ferritin gene. Biotechnol Genet Eng Rev, 2001, 18: 351-372.

[19]

Guerinot ML. It’s elementary: enhancing Fe3+ reduction improves rice yields. Proc Natl Acad Sci USA, 2007, 104: 7311-7312.

[20]

Hegedüs A, Janda T, Horváth VG, Dudits D. Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants. J Plant Physiol, 2008, 165: 1647-1651.

[21]

Hideg É, Török K, Šnyrychová I, Sándor G, Szegedi E, Horváth VG. Response of ferritin over-expressing tobacco plants to oxidative stress, 2007, Berlin: Springer 1469 1472

[22]

Horsch RB, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231.

[23]

Inzé D, Montagu MV. Oxidative Stress in Plants. Curr Opin Biotechnol, 1995, 6: 153-158.

[24]

Jiang TB, Ding BJ, Li FJ, Yang CP. Differential expression of endogenous ferritin genes and iron homeostasis alteration in transgenic tobacco overexpressing soybean ferritin gene. Acta Genet Sin, 2006, 33(12): 1120-1126.

[25]

Kangasjärvi S, Neukermans J, Li SC, Aro E-M, Noctor G. Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot, 2012, 63: 1619-1636.

[26]

Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genom, 2009, 2: 1-79.

[27]

Koppenol WH. The centennial of the Fenton reaction. Free Radic Biol Med, 1993, 15: 645-651.

[28]

Laulhere JP, Briat JF. Iron release and uptake by plant ferritin: effects of pH, reduction and chelation. Biochem J, 1993, 290: 693-696.

[29]

Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350-382.

[30]

Majerus V, Bertin P, Lutts S. Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Sci, 2007, 173(2): 96-105.

[31]

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.

[32]

Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880.

[33]

Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol, 2005, 202: 199-211.

[34]

Peng XX, Yamauchi M. Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil, 1993, 149: 227-234.

[35]

Peyret P, Perez P, Alric M. Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase show significant homology with mammalian iron-responsive element-binding protein. J Biol Chem, 1995, 270: 8131-8137.

[36]

Proudhon D, Briat JF, Lescure AM. Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol, 1989, 90: 586-590.

[37]

Römheld V, Marschner H. Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiol Plant, 1981, 53: 354-360.

[38]

Römheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 1986, 80: 175-180.

[39]

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018.

[40]

Schmidt W. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol, 1999, 141: 1-26.

[41]

Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant, 1998, 104(2): 167-174.

[42]

Sijmons PC, Van den Briel W, Bienfait HF. Cytosolic NADPH is the electron donor for extracellular FeIII reduction in iron-deficient bean roots. Plant Physiol, 1984, 75: 219-221.

[43]

Sinha S, Gupta M, Chandra P. Oxidative stress induced by iron in Hydrilla verticillata (l.f.) royle: response of antioxidants. Ecotoxicol Environ Saf, 1997, 138: 286-291.

[44]

Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 1990, 2: 503-512.

[45]

Spiller S, Kaufman LS, Thomsom WF, Briggs WR. Specific mRNA and rRNA levels in greening pea leaves during recovery from iron stress. Plant Physiol, 1987, 84: 409-414.

[46]

Terry N, Abadía J. Function of iron in chloroplasts. J Plant Nutr, 1986, 9: 609-646.

[47]

Theil EC. Ferritin: at the crossroads of iron and oxygen metabolism. J Nutr, 2003, 133: 1549S-1553S.

[48]

Theil EC. Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: the ferritin story. Biometals, 2007, 20: 513-521.

[49]

Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF. Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J, 1998, 17(1): 93-97.

[50]

Vose PB. Iron nutrition in plants: a word overview. J Plant Nutr, 1982, 5: 233-249.

[51]

Wang YC, Jiang J, Zhao X, Liu GF, Yang CP, Zhan LP. A novel lea gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci, 2006, 171: 655-662.

[52]

Yang GY, Wang YC, Xia DA, Gao CQ, Wang C, Yang CP. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult, 2014, 117: 99-112.

[53]

Yang JL, Chen Z, Wu SQ, CuiY ZL, Dong H, Yang CP, Li CH. Overexpression of the Tamarix hispida ThMT3 gene increases copper tolerance and adventitious root induction in Salix matsudana Koidz. Plant Cell Tissue Organ Cult, 2015, 121: 469-479.

[54]

Yi Y, Guerinot ML. Genetic evidence that induction of root Fe (III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J, 1996, 10(5): 835-844.

[55]

Zhang TT, Song YZ, Liu YD, Guo XQ, Zhu CX, Wen FJ. Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa. Chin Sci Bull, 2008, 53: 3656-3665.

[56]

Zhang X, Wang L, Meng H, Wen HT, Fan YL, Zhao J. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol, 2011, 75(4): 365-378.

[57]

Zheng HQ, Lin SZ, Zhang Q, Lei Y, Hou L, Zhang ZY. Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar. Plant Cell Rep, 2010, 29: 449-460.

[58]

Zok A, Oláh R, Hideg É, Horváth VG, Kós PB, Majer P, Gy V, Szegedi E. Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell Tissue Organ Cult, 2010, 100: 339-344.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/