Rooting of Pinus radiata somatic embryos: factors involved in the success of the process

I. A. Montalbán , P. Moncaleán

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (1) : 65 -71.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (1) : 65 -71. DOI: 10.1007/s11676-018-0618-5
Original Paper

Rooting of Pinus radiata somatic embryos: factors involved in the success of the process

Author information +
History +
PDF

Abstract

In vitro conditions of the culture media, plant growth regulators and culture containers may cause anatomical and physiological changes that have negative effects on rooting and ex vitro acclimatization of somatic plantlets. The control of these factors could contribute to the improvement of somatic embryogenesis systems in conifers, especially in pines. The influence of macronutrient concentrations, explant type and culture containers in Pinus radiata D. Don in vitro somatic embryo rooting were analyzed. The highest rooting percentage was observed using half-strength macronutrient concentrations, complete micronutrients and vitamins of Quoirin and Lepoivre medium. Although the use of glass culture vessels was the best to increase the efficiency of the somatic embryogenesis process in terms of rooting, the use of ventilated containers resulted in a significant increase in the percentage of plants able to be planted in the field.

Keywords

Acclimatization / Auxins / Containers / Pinus radiata / Somatic embryogenesis

Cite this article

Download citation ▾
I. A. Montalbán, P. Moncaleán. Rooting of Pinus radiata somatic embryos: factors involved in the success of the process. Journal of Forestry Research, 2019, 30(1): 65-71 DOI:10.1007/s11676-018-0618-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aitken-Christie J, Singh AP, Davies H. Hanover JW, Keathley DE. Multiplication of meristematic tissue: a new tissue culture system for radiata pine. Genetic manipulation of woody plants, 1988, New York: Plenum Publishing Corporation 413 432

[2]

Alonso P, Moncaleán P, Centeno ML, Fernández B, Rodríguez A, Ordás R. An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci, 2006, 63(8): 879-885.

[3]

Arigita L, Canal MJ, Tamés RS, González A. CO2-enriched microenvironment affects sucrose and macronutrients absorption and promotes autotrophy in the in vitro culture of kiwi (Actinidia deliciosa Chev. Liang and Ferguson). In Vitro Cell Dev Biol Plant, 2010, 46(3): 312-322.

[4]

Aronen T, Pehkonen T, Ryynänen L. Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res, 2009, 24(5): 372-383.

[5]

Barrales-López A, Robledo-Paz A, Trejo C, Espitia-Rangel E, Rodríguez-De la O JL. Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. plantlets. In Vitro Cell Dev Biol Plant, 2015, 51(3): 274-283.

[6]

Bonga JM. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers?. Trees Struct Funct, 2017, 31(3): 780-789.

[7]

Bonga JM, Klimaszewska KK, von Aderkas P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell, Tissue Organ Cult, 2010, 100(3): 241-254.

[8]

Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM. Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell, Tissue Organ Cult, 2009, 98(2): 165-178.

[9]

Côrrea LR, Fett-Neto AG. Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol, 2004, 29(6): 315-324.

[10]

De Diego N, Montalbán IA, Fernández de Larrinoa E, Moncaleán P. In vitro regeneration of Pinus pinaster adult trees. Can J For Res, 2008, 38(10): 2607-2615.

[11]

De Klerk GJ, Mrinova S, Rouf S, ter Brugge J. Salicylic acid affects rooting of apple microcuttings by enhancement of oxidation of auxin. Acta Hort, 1997, 447: 247-248.

[12]

Duhoux E, Davies D. Shoot production from cotiledonary buds of Acacia albida and influence of sucrose on rhizogenesis. J Plant Physiol, 1985, 121(2): 175-180.

[13]

Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep, 1999, 18(9): 743-748.

[14]

George EF. Plant propagation by tissue culture, Part II: in Practice, 1996, Edington: Exegetics Ltd. 1361

[15]

Hargreaves CL, Grace LJ, van der Maas SA, Menzies MI, Kumar S, Holden DG, Foggo MN, Low CB, Dibley MJ. Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J For Res, 2005, 35(11): 2629-2641.

[16]

Kodja H, Govinden-Soulange A, Gurib-Fakim I, Robene-Soustrade L, Humeau L, Figier J. Micropropagation of Psiadia arguta through cotyledonary axillary bud culture. Plant Growth Regul, 1998, 25(2): 75-80.

[17]

Krueger S, Robacker C, Simonton W. Culture of Amelanchier × grandiflora in a programmable micropropagation apparatus. Plant Cell, Tissue Organ Cult, 1991, 27(2): 219-226.

[18]

Liao YK, Juan IP. Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res, 2015, 20(1): 114-124.

[19]

Montalbán IA, De Diego N, Moncaleán P. Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees Struct Funct, 2010, 24(6): 1061-1071.

[20]

Montalbán IA, De Diego N, Moncaleán P. Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequence ex vitro performance in Pinus radiata. Forestry, 2011, 84(4): 363-373.

[21]

Montalbán IA, De Diego N, Moncaleán P. Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol Plant, 2012, 34(2): 451-460.

[22]

Montalbán IA, Setién-Olarra A, García-Mendiguren O, Moncaleán P. Somatic embryogenesis in Pinus halepensis Mill.: an important ecological species from the Mediterranean forest. Trees Struct Funct, 2013, 27(5): 1339-1351.

[23]

Park YS, Barrett JD, Bonga JM. Application of somatic embryogenesis in high-value clonal forestry. Deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant, 1998, 34(3): 231-239.

[24]

Pavlović S, Vinterhalter B, Mitić N, Adžić S, Pavlović N, Zdravković M, Vinterhalter D. In vitro shoot regeneration from seedling explants in Brassica vegetables: red cabbage, broccoli, Savoy cabbage and cauliflower. Arch Biol Sci, 2010, 62(2): 337-345.

[25]

Quoirin M, Lepoivre P. Études des milieux adaptés aux cultures in vitro de Prunus. Acta Hort, 1977, 78: 437-442.

[26]

Ragonezi C, Klimaszewska K, Castro MR, Lima M, de Oliveira P, Zavattieri MA. Adventitious rooting of conifers: influence of physical and chemical factors. Trees Struct Funct, 2010, 24(6): 975-992.

[27]

Sriskandarajah S, Skirvin RM, Abu-Qaoud H. The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell, Tissue Organ Cult, 1990, 21(2): 185-189.

[28]

Sutton B. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci, 2002, 59(5–6): 657-661.

[29]

Walter C, Smith DR, Connett MB, Grace L, White DWR. A biolistic approach for the transfer and expression of a uidA reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep, 1994, 14(2–3): 69-74.

[30]

Wiesman Z, Lavee S. Enhancement of IBA stimulatory effect on rooting of olive cultivar stem cuttings. Sci Hortic, 1995, 62(3): 189-198.

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/