Estimation of leaf area index from high resolution ZY-3 satellite imagery in a catchment dominated by Larix principis-rupprechtii, northern China

Tian Wang , Fengfeng Kang , Hairong Han , Xiaoqin Cheng , Jiang Zhu , Wensong Zhou

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (2) : 603 -615.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (2) : 603 -615. DOI: 10.1007/s11676-018-0617-6
Original Paper

Estimation of leaf area index from high resolution ZY-3 satellite imagery in a catchment dominated by Larix principis-rupprechtii, northern China

Author information +
History +
PDF

Abstract

Leaf area index (LAI) is a key factor that determines a forest ecosystem’s net primary production and energy exchange between the atmosphere and land surfaces. LAI can be measured in many ways, but there has been little research to compare LAI estimated by different methods. In this study, we compared the LAI results from two different approaches, i.e., the dimidiate pixel model (DPM) and an empirical statistic model (ESM) using ZY-3 high-accuracy satellite images validated by field data. We explored the relationship of LAI of Larix principis-rupprechtii Mayr plantations with topographic conditions. The results show that DPM improves the simulation of LAI (r = 0.86, RMSE = 0.57) compared with ESM (r = 0.62, RMSE = 0.79). We further concluded that elevation and slope significantly affect the distribution of LAI. The maximum peak of LAI appeared at an aspect of east and southeast at an elevation of 1700–2000 m. Our results suggest that ZY-3 can satisfy the needs of quantitative monitoring of leaf area indices in small-scale catchment areas. DPM provides a simple and accurate method to obtain forest vegetation parameters in the case of non-ground measurement points.

Keywords

Dimidiate pixel model / Empirical statistic / Fractional vegetation cover / Larix principis-rupprechtii / NDVI / ZY-3

Cite this article

Download citation ▾
Tian Wang, Fengfeng Kang, Hairong Han, Xiaoqin Cheng, Jiang Zhu, Wensong Zhou. Estimation of leaf area index from high resolution ZY-3 satellite imagery in a catchment dominated by Larix principis-rupprechtii, northern China. Journal of Forestry Research, 2019, 30(2): 603-615 DOI:10.1007/s11676-018-0617-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asner GP, Scurlock J, Hicke JA. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol Biogeogr, 2003, 12(3): 191-205.

[2]

Bicheron P, Marc L. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ, 1999, 67: 251-266.

[3]

Chason JW, Baldocchi DD, Huston MA. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agr Forest Meteorol, 1991, 57(1–3): 107-128.

[4]

Chen JM, Black TA. Defining leaf area index for non flat leaves. Plant, Cell Environ, 1992, 15: 421-429.

[5]

Chen JM, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ, 1996, 55(2): 153-162.

[6]

Chen X, Vierling L, Deering D, Conley A. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study. Int J Remote Sens, 2005, 26(24): 5433-5451.

[7]

Colombo R, Bellingeri D, Fasolini D, Marino CM. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ, 2003, 86(1): 120-131.

[8]

De Bruijn A, Gustafson EJ, Sturtevant BR, Foster JR, Miranda BR, Lichti NI, Jacobs DF. Toward more robust projections of forest landscape dynamics under novel environmental conditions: embedding PnET within LANDIS-II. Ecol Model, 2014, 287: 44-57.

[9]

Fang HL, Liang SL. Retrieving leaf area index with a neural network method: simulation and validation. IEEE T Geosci Remote, 2003, 41: 2052-2062.

[10]

Fang L, Wang M, Li D, Pan J. CPU/GPU near real-time preprocessing for ZY-3 satellite images: relative radiometric correction, MTF compensation, and geocorrection. Isprs J Photogramm, 2014, 87: 229-240.

[11]

Fassnacht KS, Gower ST, MacKenzie MD, Nordheim EV, Lillesand TM. Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper. Remote Sens Environ, 1997, 2(61): 229-245.

[12]

Freeman A, Durden SL. A three-component scattering model for polarimetric SAR data. Ieee T Geosci Remote, 1998, 36: 963-973.

[13]

Ganguly S, Schull MA, Samanta A, Shabanov V, Milesi C, Nemani R. Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: theory. Remote Sens Environ, 2008, 112: 4333-4343.

[14]

Gao S, Niu Z, Huang N, Hou X. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. Int J Appl Earth Obs, 2013, 24: 1-8.

[15]

Gao P, Niu X, Wang B, Zheng Y. Land use changes and its driving forces in hilly ecological restoration area based on gis and rs of northern china. Scientific Reports, 2015, 5: 11038.

[16]

Houborg R, Boegh E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sens Environ, 2008, 112(1): 186-202.

[17]

Houborg R, McCabe M, Cescatti A, Gao F, Schull M, Gitelson A. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sens Environ, 2015, 159: 203-221.

[18]

Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 2002, 83(1): 195-213.

[19]

Kitaoka S, Koike T. Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation. Physiol Plantarum, 2004, 121(4): 604-611.

[20]

Koetz B, Baret F, Poilve H, Hill J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens Environ, 2005, 95: 115-124.

[21]

Li X, Zhang Y, Bao Y, Luo J, Jin X, Xu X, Song X, Yang G. Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sensing, 2014, 6(7): 6221-6241.

[22]

Liu Q, Liang SL, Xiao Z, Fang H. Retrieval of leaf area index using temporal, spectral, and angular information from multiple satellite data. Remote Sens Environ, 2014, 145: 25-37.

[23]

Los SO. A global multi-year biophysical land surface data set from NOAA AVHRR data. IEEE Int Geosci Remote Sensing, 1999, 2: 1087-1089.

[24]

Majasalmi T, Rautiainen M, Stenberg P, Lukeš P. An assessment of ground reference methods for estimating LAI of boreal forests. Forest Ecol Manag, 2013, 292: 10-18.

[25]

Meier IC, Leuschner C. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems, 2008, 11(5): 655-669.

[26]

Moran MS, Maas SJ, Pinter PJ. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sens Rev, 1995, 3(12): 335-353.

[27]

Ni W, Sun G, Ranson KJ, Pang Y, Zhang Z, Yao W. Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas. Remote Sens Environ, 2015, 159: 194-202.

[28]

Novelli A, Tarantino E, Fratino U, Iacobellis V, Romano G, Gentile F. A data fusion algorithm based on the Kalman filter to estimate leaf area index evolution in durum wheat by using field measurements and MODIS surface reflectance data. Remote Sens Lett, 2016, 7(5): 476-484.

[29]

Olivas PC, Oberbauer SF, Clark DB, Clark DA, Ryan MG, O’Brien JJ, Ordonez H. Comparison of direct and indirect methods for assessing leaf area index across a tropical rain forest landscape. Agr Forest Meteorol, 2013, 177: 110-116.

[30]

Pfeifer M, Gonsamo A, Disney M, Pellikka P, Marchant R. Leaf area index for biomes of the Eastern Arc Mountains: landsat and SPOT observations along precipitation and altitude gradients. Remote Sens Environ, 2012, 118: 103-115.

[31]

Qi Y, Li F, Liu Z, Jin G. Impact of understorey on overstorey leaf area index estimation from optical remote sensing in five forest types in northeastern China. Agr Forest Meteorol, 2014, 198: 72-80.

[32]

Rouse JW, Haas RH, Hell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, MD, p. 371

[33]

Sainte-Marie J, Saint-André L, Nouvellon Y, Laclau JP, Roupsard O, le Maire G, Delpierre N, Henrot A, Barrandon M. A new probabilistic canopy dynamics model (SLCD) that is suitable for evergreen and deciduous forest ecosystems. Ecol Model, 2014, 290: 121-133.

[34]

Schleppi P, Thimonier A, Walthert L. Estimating leaf area index of mature temperate forests using regressions on site and vegetation data. Forest Ecol Manag, 2011, 261(3): 601-610.

[35]

Schlerf M, Atzberger C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ, 2006, 100(3): 281-294.

[36]

Soudani K, Francois C, le Maire G, Le Dantec V, Dufrene E. Comparative analysis of IKONOS, SPOT, and ETM + data leaf area index estimation in temperature coniferous and deciduous forest stands. Remote Sens Environ, 2006 103 4 497

[37]

Stocker TF, Qin D, Plattner G, Tignor MM, Al E. IPCC, 2013, New York: Cambridge University Press.

[38]

Strozzi T, Kääb A, Frauenfelder R. Detecting and quantifying mountain permafrost creep from in situ, airborne and spaceborne remote sensing methods. Int J Remote Sens, 2004, 25: 2919-2931.

[39]

Tang H, Brolly M, Zhao F, Strahler AH, Schaaf CL, Ganguly S, Zhang G, Dubayah R. Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA. Remote Sens Environ, 2014, 143: 131-141.

[40]

Taugourdeau S, le Maire G, Avelino J, Jones JR, Ramirez LG, Jara Quesada M, Charbonnier F, Gómez-Delgado F, Harmand J, Rapidel B, Vaast P, Roupsard O. Leaf area index as an indicator of ecosystem services and management practices: an application for coffee agroforestry. Agric Ecosys Environ, 2014, 192: 19-37.

[41]

Tillack A, Clasen A, Kleinschmit B, Förster M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens Environ, 2014, 141: 52-63.

[42]

Toda M, Yokozawa M, Emori S, Hara T. More asymmetric tree competition brings about more evapotranspiration and less runoff from the forest ecosystems: a simulation study. Ecol Model, 2010, 221(24): 2887-2898.

[43]

Verrelst J, Rivera JP, Veroustraete F, Muñoz-Marí J, Clevers JG, Camps-Valls G, Moreno J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods–A comparison. Isprs J Photogramm, 2015, 108: 260-272.

[44]

Verstraete MM, Pinty B. Designing optimal spectral indexes for remote sensing applications. Ieee T Geosci Remote, 1996, 34: 1254-1265.

[45]

Verstraete MM, Pinty B, Dickinson RE. A physical model of the bidirectional reflectance of vegetation canopies: 1 Theory. J Geophys Res, 1990, 95(D8): 11755-11765.

[46]

Viana H, Aranha J, Lopes D, Cohen WB. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol Model, 2012, 226: 22-35.

[47]

Vina A, Chen X, Yang W, Liu W, Li Y, Ouyang Z, Liu J. Improving the efficiency of conservation policies with the use of surrogates derived from remotely sensed and ancillary data. Ecol Indic, 2013, 26: 103-111.

[48]

Wang Q, Adiku S, Tenhunen J, Granier A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ, 2005, 94(2): 244-255.

[49]

Wang T, Zhang G, Li D, Tang X, Jiang Y, Pan H, Zhu X, Fang C. Geometric accuracy validation for ZY-3 satellite imagery. IEEE Geosci Remote Sens Lett, 2014, 11(6): 1168-1171.

[50]

Wang X, Bi H, Song Q, Lu S. Influence of forest coverage on basin runoff in China’s loess plateau. Pol J Environ Stud, 2015, 24(2): 743-750.

[51]

Watson D. Comparative physiological studies in the growth of field crops I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Bot-London, 1947, 11(1): 41-76.

[52]

Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agr Forest Meteorol, 2004, 121(1–2): 37-53.

[53]

White K, Pontius J, Schaberg P. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens Environ, 2014, 148: 97-107.

[54]

Wu J, Wang D, Bauer ME. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crop Res, 2007, 102(1): 33-42.

[55]

Yang G, Pu R, Zhang J, Zhao C, Feng H, Wang J. Remote sensing of seasonal variability of fractional vegetation cover and its object-based spatial pattern analysis over mountain areas. Isprs J Photogramm, 2013, 77: 79-93.

[56]

Zhang X, Liao C, Li J, Sun Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int J Appl Earth Obs, 2013, 21: 506-512.

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/