Coarse woody debris and wood-colonizing fungi differences between a reserve stand and a managed forest in the Taborz region of Poland

Sławomir Piętka , Agata Sotnik , Marta Damszel , Zbigniew Sierota

Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (3) : 1081 -1091.

PDF
Journal of Forestry Research ›› 2019, Vol. 30 ›› Issue (3) : 1081 -1091. DOI: 10.1007/s11676-018-0612-y
Original Paper

Coarse woody debris and wood-colonizing fungi differences between a reserve stand and a managed forest in the Taborz region of Poland

Author information +
History +
PDF

Abstract

The aim of this research was to evaluate the amount of woody debris (m3/ha) on the forest floor and the associated wood-colonizing fungi. The study was performed in the Taborz region, known for its Scots pine provenance experiments, against the background of a recently launched Polish legislation to protect the biodiversity on the forest floor in managed (harvested) stands. We investigated a managed stand (136-years-old) and the reserve stand ‘Sosna Taborska’ (261-years-old). In the reserve stand, the mean volume of woody debris was six times higher than in the managed forests, i.e. 65 versus 11 m3/ha. In addition, in the reserve stand, the number of fungi taxa colonizing the dead wood was larger than in the managed stands, with a higher number of fruitbodies. Total fungal richness was higher in the reserve than in the managed stand, i.e. 28 versus 12 species. The dominant taxa at both sites were Fomitopsis pinicola and Fomes fomentarius, although some taxa were only found in the reserve (e.g., Stereum hirsutum). The volume of woody debris as well as the diversity of fungi in the managed stand were lower than in the reserve, albeit greater than in other Scots pine stands in Poland. These results testify to the gains in biodiversity yielded by the management conservation management approach at the reserve stand.

Keywords

Coarse woody debris / Fungi / Managed (harvested) stands / Reserve / Sosna Taborska Reserve Forest / Indices

Cite this article

Download citation ▾
Sławomir Piętka, Agata Sotnik, Marta Damszel, Zbigniew Sierota. Coarse woody debris and wood-colonizing fungi differences between a reserve stand and a managed forest in the Taborz region of Poland. Journal of Forestry Research, 2019, 30(3): 1081-1091 DOI:10.1007/s11676-018-0612-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aakala T. Coarse woody debris in late-successional Picea abies forests in northern Europe: variability in quantities and models of decay class dynamics. For Ecol Manag, 2010, 260: 770-779.

[2]

Belaoussoff S, Kevan PG, Murphy S, Swanton C. Assessing tillage disturbance on assemblages of ground beetles (Coleoptera: Carabidae) by using a range of ecological indices. Biodivers Conserv, 2003, 12: 851-882.

[3]

Bobiec A. Living stands and dead wood in the Białowieża Forest: suggestions for restoration management. For Ecol Manag, 2002, 165: 125-140.

[4]

Boddy L, Heilmann-Clausen J. Boddy L, Frankland JC, van West P. Basidiomycete community development in temperate angiosperm wood. Ecology of saprotrophic basidiomycetes, 2008, Amsterdam: Elsevier 211 237

[5]

Böhl J, Brändli U-B. Deadwood volume assessment in the third Swiss National Forest Inventory: methods and first results. Eur J For Res, 2007, 126: 449-457.

[6]

Brazee NJ, Lindner DL, D’Amato AW, Fraver S, Forrester JA, Mladenoff DJ. Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. Biodivers Conserv, 2014, 23: 2155-2172.

[7]

Breitenbach J, Kränzlin F (1984) Pilze der Schweiz. Beitrag zur Kenntnis der Pilzflora der Schweiz. Band 1. Ascomyceten. Verl Mykologia, Luzern

[8]

Breitenbach J, Kränzlin F (1986) Pilze der Schweiz. Beitrag zur Kenntnis der Pilzflora der Schweiz. Band 2. Heterobasidiomycetes, Aphylloporales, Gastromycetes. Verl Mykologia, Luzern

[9]

Breitenbach J, Kränzlin F (1991) Pilze der Schweiz. Beitrag zur Kenntnis der Pilzflora der Schweiz. Band 3. Röhrlinge und Blätterpilze. Teil 1. Strobilomycetaceae und Boletaceae, Paxillaceae, Gomphidiaceae, Hygrophoraceae, Tricholomataceae, Polyporaceae (lamellige). Ver Mykologia, Luzern

[10]

Breitenbach J, Kränzlin F (1995) Pilze der Schweiz. Beitrag zur Kenntnis der Pilzflora der Schweiz. Band 4. Blätterpilze. Teil 2. Entolomataceae, Pluteaceae, Amanitaceae, Agaricaceae, Coprinaceae, Bolbitiaceae, Strophariaceae. Verl Mykologia, Luzern

[11]

Breitenbach J, Kränzlin F (2000) Pilze der Schweiz. Beitrag zur Kenntnis der Pilzflora der Schweiz. Band 5. Blätterpilze. Teil 3. Cortinariaceae. Verl Mykologia, Luzern

[12]

Bujoczek L, Zięba S, Banaś J. Effect of site conditions and site index for the dominant tree species on the amount of deadwood in managed forests/Ocena zasobów martwego drewna w lasach gospodarczych z uwzględnieniem typów siedliskowych lasu oraz bonitacji gatunku panującego/in Polish with English summary. Sylwan, 2016, 160(4): 320-327.

[13]

Clark PJ, Evans FC. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 1954, 35(4): 445-453.

[14]

Dudley N, Vallauri D. Deadwood, living forests. The importance of veteran trees and deadwood to biodiversity, 2004, Gland: WWF Brochure 16

[15]

Dunn CJ, Bailey JD. Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades. For Ecol Manag, 2012, 276: 71-81.

[16]

Feest A. Establishing baseline indices for the quality of the biodiversity of restored habitats using a standardized sampling process. Restor Ecol, 2006, 14(1): 112-122.

[17]

Forest Act (1991) http://www.fao.org/faolex/results/details/en/?details=LEX-FAOC060026

[18]

Franklin JF, Shugart HH, Harmon ME. Tree death as an ecological process. BioScience, 1987, 37: 550-556.

[19]

Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol, 2013, 27(3): 605-610.

[20]

Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res, 1986, 15: 133-302.

[21]

Heilmann-Clausen J, Christensen M. Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manag, 2004, 201: 105-117.

[22]

Herrmann S, Bauhus J. Effects of moisture, temperature and decomposition stage of respirational carbon loss from coarse wood debris (CWD) of important European tree species. Scand J For Res, 2012, 28: 346-357.

[23]

Holeksa J, Zielonka T, Zywiec M. Modelling the decay of coarse woody debris in a subalpine Norway spruce forest of the West Carpathians, Poland. Can J For Res, 2008, 38: 415-428.

[24]

Holeksa J, Żywiec M, Kurek P (2014) Amount of dead wood in managed forests in connection with demands of nature protection in Natura 2000 areas—from static to dynamic approach (in Polish with English summary). In: Proceedings of the center for nature and forestry Education, vol 16. 41(4)

[25]

Kondracki J. Regional geography of Poland/Geografia regionalna Polski/In Polish, 2002, Warszawa: Wyd. Nauk. PWN.

[26]

Kränzlin F (2005) Pilze der Schweiz. Beitrag zur Kenntnis der Pilzflora der Schweiz. Band 5. Russulaceae. Verlag Mykologia, Luzern

[27]

Kruk H, Kornatowska B. Sustainable forest management in Poland—theory and practice. Folia For Pol ser A, 2014, 56(1): 45-55.

[28]

Kwaśna H, Mazur A, Łabędzki A, Kuźmiński R, Łakomy P. Communities of fungi in decomposed wood of oak and pine. Leś Pr Bad/For Res Pap, 2016, 77(3): 261-275.

[29]

Lofroth E. Voller J, Harrison S. The dead wood cycle. Conservation biology principles for forested landscapes, 1998, Vancouver, B.C.: UBC Press 185 214

[30]

Ludwig E. Pilzkompendium. T. 2: Abbildungen. Die größeren Gattungen der Agaricales mit farbigem Sporenpulver (ausgenommen Cortinariaceae), 2007, Berlin: Fungicon Verlag.

[31]

Magurran AE. Ecological diversity and its measurement, 1988, Princeton: Princeton Univ Press

[32]

Maria GL, Sridhar KR. Richness and diversity of filamentous fungi on woody litter of mangroves along the west coast of India. Curr Sci, 2002, 83(12): 1573-1580.

[33]

Marshall PL, Davis G, LeMay VM (2000) Using line intersect sampling for coarse woody debris. Res Sec, Van For Reg., B.C. Min For, Nanaimo, B.C. Tec. Rep. TR–003

[34]

Motta R, Berretti R, Lingua E, Piussi P. Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. For Ecol Manag, 2006, 235: 155-163.

[35]

Nemec AFL, Davis G (2002) Efficiency of six line intersect sampling designs for estimating volume and density of coarse woody debris. For Res Tech Rep TR-021. British Columbia For. Serv. Available: https://www.for.gov.bc.ca/rco/research/cwd/tr021.pdf

[36]

Neumann M. The significance of different indices for stand structure and diversity in forests. For Ecol Manag, 2001, 145(1): 91-106.

[37]

Neumann M, Starlinger F. The significance of different indices for stand structure and diversity in forests. For Ecol Manag, 2001, 145(1–2): 91-106.

[38]

Nowińska R, Urbański P, Szewczyk W. Species diversity of plants and fungi on logs and fallen tree of different species in oak-hornbean forests. Botanika Steciana, 2009, 13: 109-124.

[39]

Pasierbek T, Holeksa J, Wilczek Z, Zywiec M. Why the amount of dead wood in Polish forest reserves is so small?. Nat Conserv, 2007, 64: 65-71.

[40]

Pawicka K, Woziwoda B. Balance of dead wood in the ‘Polesie Konstantynowskie’ nature reserve (central Poland)/Bilans martwego drewna w rezerwacie, Polesie Konstatntynowskie”/in Polish with English summary. Sylwan, 2011, 155(12): 851-858.

[41]

Polityka Lesna Państwa (1997) Forest policy in Poland. Min. Envir. Prot., Nat. Res. For., Warszawa, p 27

[42]

PQStat software ver. 1.6.4. Available: www.PQStat.com

[43]

Sippola AL, Renvall P. Wood-decomposing fungi and seed-tree cutting: a 40-year perspective. For Ecol Manag, 1999, 115(2–3): 183-201.

[44]

Skirgiełło A. Macromycetes of oak-hornbean forests in the Białowieża National Park—monitoring studies. Acta Mycol, 1998, 33(2): 171-189.

[45]

Skwarek K, Bijak SZ. Resources of dead wood in the municipal forests in Warsaw. Leś Pr Bad/For Res Pap, 2015, 76(4): 322-330.

[46]

Sørensen T. A method of establishing groups of equal amplitude in plant sociology base on similarity of species and its application to analyses of vegetation on Danish commons. Biol Skr, 1948, 5: 1-34.

[47]

Stokland JN, Larsson N. Legacies from natural forest dynamics: different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For Ecol Manag, 2011, 261: 1707-1721.

[48]

Stokland JN, Siitonen J, Jonsson BG. Biodiversity in dead wood, 2012, Cambridge: Cambrifge Univ Press 509

[49]

Sturtevant BR, Bissonette JA, Long JN, Roberts DW. Coarse woody debris as a function of age, stand structure, and disturbance in Boreal Newfoundland. Ecol Appl, 1997, 7(2): 702-712.

[50]

Szewczyk J, Szwagrzyk J. Tree regeneration on rotten wood and on soil in old-growth stand. Vegetatio, 1996, 122: 37-46.

[51]

Van Wagner CE. The line intersect method in forest fuel sampling. For Sci, 1968, 14(1): 20-26.

[52]

Walankiewicz W (2002) The number and composition of snags in the pine-spruce stands of the Bialowieza National Park, Poland. USDA For Serv Gen Tech Rep PSW-GTR-181 489 − 500. Available: https://www.researchgate.net/publication/237464426

[53]

Weiner J (2012) Life and biosphere evolution/Życie i ewolucja biosfery. Podręcznik ekologii ogólnej/in Polish. Wyd.2. Wyd. Nauk. PWN, Warszawa

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/