Allometric models for estimating aboveground biomass and carbon in Faidherbia albida and Prosopis africana under agroforestry parklands in drylands of Niger

Massaoudou Moussa , Larwanou Mahamane

Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (6) : 1703 -1717.

PDF
Journal of Forestry Research ›› 2018, Vol. 29 ›› Issue (6) : 1703 -1717. DOI: 10.1007/s11676-018-0603-z
Original Paper

Allometric models for estimating aboveground biomass and carbon in Faidherbia albida and Prosopis africana under agroforestry parklands in drylands of Niger

Author information +
History +
PDF

Abstract

This study developed allometric models to estimate aboveground biomass and carbon of Prosopis africana and Faidherbia albida. The destructive method was used with a sample of 20 trees per species for the two parkland sites. Linear regression with log transformation was used to model aboveground biomass according to dendrometric parameters. Error analysis, including mean absolute percentage of error (MAPE) and root mean square of error (RMSE), was used to select and validate the models for both species. Model 1 (biomass according to tree diameter) for P. africana and F. albida were considered more representative. The statistical parameters of these models were R 2 = 0.99, MAPE 0.98% and RMSE 1.75% for P. africana, and R 2 = 0.99, MAPE 1.19%, RMSE 2.37% for F. albida. The average rate of carbon sequestered was significantly different for the two species (P ≤ 0.05). The total amount sequestered per tree averaged 0.17 × 10−3 Mg for P. africana and 0.25 × 10−3 Mg for F. albida. These results could be used to develop policies that would lead to the sustainable management of these resources in the dry parklands of Niger.

Keywords

Aboveground biomass / Agroforestry / Allometric models / Carbon / Niger / Soudano-sahelian

Cite this article

Download citation ▾
Massaoudou Moussa, Larwanou Mahamane. Allometric models for estimating aboveground biomass and carbon in Faidherbia albida and Prosopis africana under agroforestry parklands in drylands of Niger. Journal of Forestry Research, 2018, 29(6): 1703-1717 DOI:10.1007/s11676-018-0603-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen SE, Grimshaw HM, Rowland AP. Moore PD, Chapman SB. Chemical analysis. Methods in plant ecology, 1986, Oxford: Blackwell 285 344

[2]

Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J For Res, 1972, 2: 49-53.

[3]

Basuki TM, van Laake PE, Skidmore AK, Hussin YA. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manage, 2009, 257: 1684-1694.

[4]

Bayen P, Bognounou F, Lykke AM, Ouédraogo M, Thiombiano A. The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso. Environ Dev Sustain, 2016, 18(1): 143-156.

[5]

Beedy TL, Chanyenga Chanyenga TF, Akinnifesi FK, Sileshi GW, Nyoka Nyoka BI, Gebrekirstos A. Allometric equations for estimating above-ground biomass and carbon stock in Faidherbia albida under contrasting management in Malawi. Agrofor Syst, 2016, 90(6): 1061-1076.

[6]

Bernoux M, Chevallier T. Le carbone dans les sols des zones sèches. Des fonctions multiples indispensables. Les dossiers thématiques du CSFD/Agropolis International, 2013, 10: 44.

[7]

Bonate Peter L.. Linear Models and Regression. Pharmacokinetic-Pharmacodynamic Modeling and Simulation, 2011, Boston, MA: Springer US 61 100

[8]

Breman H, Kessler JJ. The potential benefits of agroforestry in the Sahel and othersemi-arid regions. Euro J Agric, 1997, 7: 25-33.

[9]

Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO forestry papers, 134. FAO, Rome, Italy. http://www.fao.org/docrep

[10]

Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Victoria RA, Ferreira CAC. Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. For Ecol Manage, 1995, 75(1–3): 175-189.

[11]

Chatterjee S, Hadi AS. Regression analysis by example, 2006, Joh Wilson: Lauder 383

[12]

Chavan BL, Rasal GB. Potentiality of Carbon sequestration in six year ages young plant from University campus of Aurangabad. Global J Res Eng, 2011, 11(7): 14-20.

[13]

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. Tree allometry and improved estimation of carbonstocks and balance in tropical forests. Oecologia, 2005, 145: 87-99.

[14]

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman MHRC, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved pantropical allometric models to estimate the above ground biomass of tropical forests. Glob Change Biol, 2014, 20: 3177-3190.

[15]

Cisse MI. Le Houerou HN. The browse production of some trees of the Sahel. Relationships between maximum foliage biomass and various physical parameters. Browse in Africa. The current state of knowledge, 1980, Addis Ababa: ILCA 204 208

[16]

Dramé Yayé A, Berti F. Les enjeux socio-économiques autour de l’agroforesterie villageoise à Aguié (Niger). Tropicultura, 2008, 26(3): 141-149.

[17]

Ebuy J, Lokombé JP, Ponette Q, Sonwa D, Picard N. Allometric equation for predicting aboveground biomass of three tree species. J Trop For Sci, 2011, 23: 125-132.

[18]

Garrity DP, Akinnifesi FK, Ajayi OC, Sileshi GW, Mowo JG, Kalinganire A, Larwanou M, Bayala J. Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Secur, 2010, 2: 197-214.

[19]

Gassama-Dia YK, Sané D, N’Doye M. Reproductive biology of Faidherbia albida (Del.) A. Chev. Silva Fenn, 2003, 37(4): 429-436.

[20]

Gavaud M, Boulet R. 1964. Carte pédologique de reconnaissance des sols de la République du Niger (Maradi). ORSTOM et IGM, p 1

[21]

Graham MH. Confronting multicollinearity in ecological multiple regression. Ecology, 2003, 84: 2809-2815.

[22]

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manage, 2010, 260: 1375-1388.

[23]

Henry M, Picard N, Trotta C, Manlay R, Valentini R, Bernoux M, Saint-André L. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn, 2011, 45: 477-569.

[24]

IPCC. Land use, land-use change, and forestry. A special report of the IPCC, 2000, Cambridge: Cambridge Cambridge University Press 30

[25]

Issiaka IM, Yamba B, Yansheng G. Land-use and land-cover change in semi-arid zone: the case of Waro-Souloulou Area in Goulbi Maradi Watershed in the Republic of Niger. Environ Nat Resou Res, 2012, 2(1): 47-62.

[26]

Jara MC, Henry M, Réjou-Méchain M, Wayson C, Zapata-Cuartas M, Piotto D, Guier FA, Lombis HC, López EC, Lara RC, Rojas KC, Pasquel JDÁ, Montoya ÁD, Vega JF, Galo AJ, López OR, Marklund LG, Fuentes JMM, Milla F, de Chaidez JN, Malavassi EO, Pérez J, Zea CR, García LR, Pons RR, Saint-André L, Sanquetta C, Scott C, Westfall J. Guidelines for documenting and reporting tree allometric equations. Ann of Sci, 2015, 72: 763-768.

[27]

Kemmouche A, Mering C, Sansal B. Cartographie de la densité du couvert ligneux dans les zones arides et semi-arides à l’aide de l’imagerie satellitaire. Sécheresse, 2008, 19(2): 129-135.

[28]

Kho RM, Yacouba B, Yayé M, Katkoré B, Moussa A, Iktam A, Mayaki A. Separating the effects of trees on crops: the case of Faidherbia albida and millet in Niger. Agrofor Syst, 2001 52 219–238 2001

[29]

Kuyah S, Dietz J, Muthuria C, Jamnadassa R, Mwangi P, Coe R, Neufeldt H. Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agric Ecosyst Environ, 2012, 158: 216-224.

[30]

Laouali A, Dan Guimbo I, Larwanou M, Inoussa MM, Mahamane A. Utilisation de Prosopis africana (G. et Perr.) Taub dans le sud du département d’Aguié au Niger: les différentes formes et leur importance. Int J Biol Chem Sci, 2014, 8(3): 1065-1074.

[31]

Laouali A, Diouf A, Inoussa MM, Mamoudou BM, Illiassou SA, Mahamane A. Modeling the geographic distribution of Prosopis africana (G. and Perr.) Taub. in Niger. Environ Nat Resour Res, 2016, 6(2): 134-136.

[32]

Larwamou M, Saadou M, Hamadou S. Les arbres dans les systèmes agraires en zone sahélienne du Niger: mode de gestion, atouts et contraintes. Tropicultura, 2006, 24(1): 14-18.

[33]

Larwanou M, Yemshaw Y, Sâadou M. Prediction models for estimating foliar and fruit dry biomasses of five Savannah tree species in the West African Sahel. Int J Biol Chem Sci, 2010, 4(6): 2245-2256.

[34]

Mahamane A, Saadou M, Bakasso Y, Abassa I, Aboubacar I, Karim S. Analyse diachronique de l’occupation des terres et caractéristiques de la végétation dans la commune de Gabi (région de Maradi, Niger). Sécheresse, 2007, 18(4): 296-304.

[35]

Makungwa SD, Chittock A, Skole DL, Kanyama-Phiri GY, Woodhouse IH. Allometry for biomass estimation in jatropha trees planted as boundary hedge in farmers’ fields. Forests, 2013, 4: 218-233.

[36]

Mascaro J, Litton CMR, Hughes F, Uowolo A, Schnitzer SA. Minimizing bias in biomass allometry: model selection and log-transformation of data. Biotropica, 2011, 43(6): 649-653.

[37]

Mascaro J, Litton CM, Hughes F, Uowolo A, Schnitzer SA. Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol J Lin Soc, 2014, 111: 230-233.

[38]

Mbow C, Verstraete MM, Sambou B, Diaw AT, Neufeldt H. Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan Guinean ecosystems of Southern Senegal. J For Res, 2013, 19: 340-347.

[39]

Mbow C, Neufeldt H, Minang PA, Luedelinga E, Kowero G. Can Agroforestry option values improve the functioning of drivers of agricultural intensification in Africa?. Curr Opinion Environ Sustain, 2014, 6: 35-40.

[40]

Moussa M, Larwanou M, Saadou M. Caractérisation des peuplements ligneux des parcs à Faidherbia albida (Del) A. Chev. et à Prosopis africana (Guill, Perrot et Rich.) Taub. du Centre-Sud Nigérien. J Appl Biosci, 2015, 94: 8890-8906.

[41]

Moussa M, Larwanou M, Saadou M. Allometric equations for biomass estimation of woody species and organic soil carbon stocks of agroforestry systems in West African: state of current knowledge. Int J Res Agric For, 2015, 2(10): 2394-5907.

[42]

Nair PKR, Nair VD. Kimble J, Heath LS, Birdsey RA, Lal R. Carbon storage in North American agroforestry systems. The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect, 2003, Boca Raton: CRC Press LLC 333 346

[43]

Nair PKR, Nair VD, Kumar BM, Haile SG. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Pol, 2009, 12: 1099-1111.

[44]

Packard GC. Is logarithmic transformation necessary in allometry?. Biol J Lin Soc, 2013, 109: 476-486.

[45]

Packard GC, Birchard GF, Boardman TJ. Fitting statistical models in bivariate allometry. Biol Rev, 2011, 86: 549-563.

[46]

Pearson T, Brown S. Guide de Mesure et de Suivi du Carbone dans les Forêts et Prairies Herbeuses, 2005, Arlington: Ecosystem Services, Unit, Winrock International 39

[47]

Peltier R, Forkong CN, Mama F, Ntoupka M, Manlay R, Henry M, Morillon V. Évaluation du stock de carbone et de la productivité en bois d’un parc à karités du Nord Cameroun. Bois For Trop, 2007, 294(4): 39-50.

[48]

Picard N, Saint-André L, Henry M (2012) Manuel de construction d’équations allométriques pour l’estimation du volume et la biomasse des arbres: de la mesure de terrain à la prédiction. FAO et CIRAD, p 220

[49]

Rondeux J. La mesure des arbres et des peuplements forestiers, 1999, Gembloux: Les Presses agronomiques de Gembloux 521

[50]

Sâadou M (1990) La végétation des milieux drainés nigériens à l’est du fleuve Niger. Thèse de doctorat. Univ Ny, p 393

[51]

Sawadogo L, Savadogo P, Tiveau D, Dayamba SD, Zida D, Nouvellet Y, Oden PC, Guinko S. Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa. J For Res, 2010, 21: 475-481.

[52]

Sileshi GW. A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manage, 2014, 329: 237-254.

[53]

Takimoto A, Nair PKR, Nair VD. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ, 2008, 125: 159-166.

[54]

Thiombiano A, Glèlè Kakaï R, Bayen P, Boussim JI, Mahamane A. Méthodes et dispositifs d’inventaires forestiers en Afrique de l’Ouest: état des lieux et propositions pour une harmonisation. Ann Sci Agric, 2015, 19: 15-31.

[55]

UNFCCC (2006) Revised simplified baseline and monitoring methodologies for selected small-scale afforestation and reforestation project activities under the clean development mechanism (Version 02), p 20. https://cdm.unfccc.int/EB/026/eb26_repan17.pdf. Accessed 05 Feb 2016

[56]

Wauters JB, Coudert S, Grallien E, Jonard M, Ponette Q. Carbon stock in rubber tree plantations in western Ghana and Mato Grosso (Brazil). For Ecol Manag, 2008, 255: 2347-2361.

[57]

Weber JC, Larwanou M, Abasse TA, Kalinganire A. Growth and survival of Prosopis africana provenances tested in Niger and related to rainfall gradients in the West African Sahel. For Ecol Manag, 2008, 256: 585-592.

[58]

Weber JC, Montes CS, Kalinganire A, Abasse T, Larwanou M. Genetic variation and clines in growth and survival of Prosopis africana from Burkina Faso and Niger: comparing results and conclusions from a nursery test and a long-term field test in Niger. Euphytica, 2015, 205(3): 809-821.

[59]

Worbes M. One hundred years of tree-ring research in the tropics -a brief history and an outlook to future challenges. Dendrochronologia, 2002, 20(1–2): 217-231.

[60]

Xiao X, White EP, Hooten MB, Durham SL. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 2011, 92: 1887-1894.

[61]

Yao X, Fu B, Lu Y, Sun F, Wang S, Liu M. Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment. PLoS ONE, 2013 8 1 e54660

[62]

Zianis D, Mencuccini M. On simplifying allometric analyses of forest biomass. For Ecol Manage, 2004, 187: 311-332.

[63]

Zuur AF, Ieno EN, Smith GM. Analysing ecological data, 2007, New York: Springer 680

[64]

Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol, 2010, 1: 3-14.

AI Summary AI Mindmap
PDF

316

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/